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EXTERIOR BALLISTICS.
INTRODUCTION.

The work. of the ballistic computer is divided into three parts:
(1) the computation of the elements of standard trajectories; (2) the
computation of differential corrections, whereby the elements of a
standard trajectory may be corrected for nonstandard conditions;
- and (3) the utilization of the foregoing to comstruct range tables
from firing records.

As is shown in Chapter VI, the World War ushered in a new era
in the handling of ballistic problems. This may be called the period
of numerical integration.

The approximations, which had been used to modify the simple
Newtonian equations of motion into such form that they could be
formally integrated, gave place to precise numerical integration of
these equations in their original form.

Practically parallel progress was made in all of the allied countries
during the war.

In America the great step in the computation of trajectories was
the introduction of numerical integration. Numerical integration
had long been used in astronomical calculations, and so it was natural
that an astronomer and mathematician, Prof. F. R. Moulton, of the
University of Chicago, while serving as a major in the Ordnance Depart-
ment of the United States Army, should have applied this method to
ballistics. The practical work of this method was materially reduced
by formulas for ‘‘integrating ahead’’ later introduced.

The work can be still further reduced by a variant of Maj. Moulton’s
method, known as the tangent-reciprocal method. But this method
has the pedagogical drawback of obscuring the physical meaning of
the steps involved, and hence will not be given first place in this
book.!

Another improvement is the change in the analytic interpretation
of the equations of motion. Formerly the z-axis was conceived of
as tangent to the earth at the gun, the system being Cartesian. In
the modern conception, the z of a point is measured along the curved
surface of the earth, and the y is measured vertically from this surface.

The progress in the computation of the differential corrections has
involved more steps. Differential equations for the corrections were
devised at the same time that numerical integration was introduced.

1 Bee Supplement A.
7

~



8 COURSE IN EXTERIOR BALLISTICS.

But these had the difficulty of requiring an independent computa-
tion for each correction.

. This difficulty was removed by the discovery at Aberdeen of a
method of solution by means of a set of adjoint equations involving
several auxiliary variables. All the differential corrections can be
expressed in terms of these auxiliary variables. A physical deriva-
tion of these variables, and of the corrections based upon them, was
. later found. Matters were further simplified by reducing all of these
variables to expressions in terms of one variable and its derivatives.
A physical derivation of this step was at once forthcoming. '

One further step should be noted, namely the development of the
weighting-factor curves for zero elevation, which have been of great
value in interpolation.

The present method of constructing range tables out of firing
records is a logical result of substituting for the Ingalls tables the
new methods of computation. Tables, to take the place of the com-
putations now necessary, are now being constructed by the tech-
nical staff at Washington.

The credit for the above-described development is largely due to
Mr. J. J. Arnaud, Master Computer, Ordnance Department; Prof.
A. A. Bennett, of the University of Texas, then Captain, Ordnance
Department, U. S. Army; Prof. G. A. Bliss, of the University of
Chicago, Technical Expert, Aberdeen; Mr. Philip Franklin, Com-
puter, Aberdeen; Dr. T. H. Gronwall, Mathematics and Dynamics
Expert, Technical Staff; Prof. H. H. Mitchell, of the University of
Pennsylvania, Master Computer, who organized the range table
computation work at Aberdeen; Dr. J. F. Ritt, of Columbia Uni-
versity, Master Computer, Technical Staff, and their associates, in
addition to those mentioned elsewhere herein.

Most of the written material on the ballistic progress made during
the war consists of scattered blue prints, some printed at Aberdeen and
some at Washington. These pamphlets overlap in spots, contain
some hiatuses, and do not agree in symbology and nomenclature.
Through a three-cornered correspondence between the Technical Staff,
Ordnance Office, (War Department), at Washington, D. C., and the
Ordnance School of Application and the Ballistic Section, Aberdeen
Proving Ground, Md., a uniform symbology and nomenclature have
been established as standard.

The first course of instruction in these new ballistic methods ever
given in this country was given at the Ordnance School of Applica-
tion in the winter of 1919-20 by Capt. Roger Sherman Hoar, Coast
Artillery, then in charge of the Ballistic Section of the Proof Depart-
ment at Aberdeen. This present book is based upon the papers
used in that course, and uses the standard symbology and nomen-
clature established as above.



INTRODUCTION. 9

It is assumed that the student is thoroughly grounded in algebra
and plane trigonometry, and knows enough calculus to appreciate
the meaning of a derivative, a differential, and a definite integral.
On that basis, this book gives, in Chapters I to IV, the irreducible
minimum of higher mathematics necessary to understand all points
involved in the later chapters.

‘The book then takes up in succession: An introduction to modern
ballistic methods (Chaps. V and VI); the computation of trajecto-
ries (Chaps. VII and VIII); the computation of differential correc-
tions (Chaps. IX to XV); and the construction of range tables (Chap.
XVI). Alternative methods, elaborations of certain points, and a
brief mention of the more involved mathematical processes necessary
to the computation of antiaircraft range tables are reserved for
supplements.

Each chapter is followed by a series of questions, designed to bring
out the salient features of the chapter. The answers to most of
these questions will be found categorically stated in the text, but
some under each chapter will require a small degree of original
thought on the part of the student.

Throughout the book the attempt is made to explain as much as
possible from the viewpoint of physics rather than from the view-
point of abstract mathematics.



CHAPTER 1.
PARTIAL DIFFERENTIATION.

Before defining the “partial differentiation’ of a function, let us
define the word “function.” wu is called a “function” of z, y, 2, ete.
if, when z, y, 2, etc., are given, the value of u is determined. Note
the broadness of this definition. Thus w=2y can be regarded as a
function of z, y, and 2, although it is evident that u is not in the
least dependent on z.

The functional relation is expressed in the general form:

u=f (@, 9,2, . . . ).
One should be sure to notice the fundamental fact that this ex-
pression, as it stands, does not take into consideration any relation-
ship which may exist between any of the variables in the parenthesis;
in other words, these variables may or may not be independent in
that expression.

Usually the functional equation can be altered so as to make z
explicitly a function of u, ¥, 2, etc.; y explicitly a function of u, z, 2,
etc. In case such a conversion is either impossible or even merely
inconvenient, it is better to regard the equation, in its original form,
as defining u as a function of z, y, 2, etc., or z as a function of 4, y, 2,
etc.; and to differentiate it as it stands, using the differential method.
Such an equation is that in problem 3, to follow. Thus, in an equa-
tion containing n variables, any one of these variables can generally
be regarded as dependent, and the remaining n—! as independent.

We are now in a position to define the term ‘partial derivative.”
If u=f (2, v,z . . . ), then the partial derivative of u with
respect to z is obtained by treating as constants all the other variables
in ‘the parenthesis, and differentia’ting with respect to z, in the ordi-
Dary manner.

But the partial derivative is written o, instead of 2%, so as to in-
indicate that z is one of several independent variables, instead of being
the sole independent variable. Thus g—: means the rate of change

of w with respect to a change in z alone out of several independent
variables.

An important point to note in this connection is that the symbol
g—:’ is highly ambiguous, i. e., it has entirely different meanings, and its
partial derivatives have entirely different values, according to what

10



I. PARTIAL DIFFERENTIATION, 11

are regarded as the independent variables. To avoid this ambiguity,

the subscript notation should be used. Thus btat;,,, means that u

should be expressed as a function of z, y, and z, and then differentiated

with respect to z: bb means that » should be expressed as a func-

tion of X and Y before differentiating, etc.! :

In practice, the subscripts may be omitted whenéver it is self-
evident, from the problem, just what are to be treated as the inde-
pendent variables in each differentiation.

PROBLEMS.

Find gz gz and gy in each of the following:

(1) z=z log y.
(2) z=a2*+8bzy— 1.

o -
@ =y
4) 2?+y*+2=a

All of the theorems of partial differentiation can be derived as
special cases of the following general theorem:

1. If wis a function of X, Y, Z - - -, each of these in turn
being a function of z, y, z - - -, then (with certain assumptions as to
continuity):

auxyz . .=auxn e, aXxyl +a'u'xﬂ . ann ‘4.
oz 0X oz oY oz

and similarly for T“;;— ete.

This theorem can be derived by the use of undetermined coeffi-
cients, or see Osgood p. 296.

This theorem is called ‘“general,” not in the sense that it is the
fundamental basis of the other theorems, for many of them have a
simpler derivation, and some, in fact, may serve as'steps in the deri-
vation of theorem 1. Nor is it advisable to use theorem 1 when some
simpler formula is available. But, as theorem 1 has a form easy to
remember, and as any other formula can be derived as a special case
thereof, it serves as a good memory peg on which to hang the whole
subject of partial differentiation.

The student should particularly note at this juncture that, although
any partial derivative may be obtained by the differential method;

1 For turther exposition of the subscript notation, see Osgood, Differential and Integral Calculus, p. 306.



12 COURSE IN EXTERIOR BALLISTICS.

yet, once formed, its numerator and denominator are inseparable and
neither can be canceled Witness the absurd results which would
follow from performing all possible cancellations in theorem 1.

The following general principles may be used in deriving special
formulas from theorem 1: ,

(@) Whenever in partial differentiation any given variable is re-
garded as dependent on one independent variable alone, then, in the
expression for the derivative of the former with respect to the latter,
the operator 9 should be changed to the operator d.

(0) The derivative of a variable, with respect to another variable
of which the first is regarded as independent, is zero.

(¢) The derivative of a variable with respect to itself is umity.

(@) If, for all values of its variables, a given function is explicitly
a constant, then the derivative of that function with respect to any
of such variables is zero.

The following special formulas may be derived from theorem 1:

ou ou ou
2. du-a—X=dX+WdY+37dZ-
This is called the expression for the ‘total differential” of u.
3. If u be a particular function of X and Y, namely XY, then:

ou BX DY
oz= Y oz T X357

which is the analog of the following formula of total differentiation:
du=YdX+XdY.

» then:

4. HuequalsXZY
bu YbX X0Y wdZ uwoX udY ubZ

302~ Z 02 7 Z 0z Zdz X oz Y oz Zo:r

b. Ifu equals Yz, then:
du dY
a—z=x$+Y.

Similar special formulas can be derived for other special relations:
which may exist between u, X, Y, Z, etc.

PROBLEMS.

Nore —The following problems should be treated exactly as though the symbols:
¥, #/, E, etc., were the simpler-looking symbols of the preceding problems and
explanation. For the purposes of any given differentiation, z, 2/, 27/, y, ¥, ¥”/»



1. PARTIAL DIFFERENTIATION. 13

and E have no relation to each other except that given in the hypotheses. But the
work on these problems should be carefully saved for later reference. In Chapter V
a meaning will be given to each of these symbols, and in Chapter IX it will be seen
that these problems, taken in order, constitute almost the entire proof of some im-
portant ballistic formulas.

PROBLEMS.

(5) Given that z’’ and y’’ are each functions of the independent
variables z’, ¥/, and y, evaluate dz’’ and dy’’ in terms of dz’, dy’,
and dy and some partial derivatives. '

For problems 6 to 13, the following is given:

2’ =—Ex’
’!/” —_— E"y/_g

‘where ¢ is a constant; and E'is a ‘‘function” of z’, ¥, ¥ and z, although
not dependent on z.

dz'’ ayu oz’ ayu
(6) oz ° (7) Oz * (8) by * (9) ay *
oz’ a,yu oz’ 9}!1

(10) % (11) oy (12) oy (13) o

The foregoing problems can be done either by one of the special
theorems or by theorem 1. It is advisable not to use theorem 1;
but if it be used, care should be taken to observe that 2’ and y’
each enter into the expressions for z’/ and ¥’/ in two capacities:
1. e., as avariable of the X sort and as a variable of the z sort. To
illustrate this, perform the following problem:

(14) z'=EZ
E =f (=, y’! Y)
Z =2

124
Evaluate g%’,— by theorem 1. Also by theorem 5.

- QUESTIONS ON CHAPTER 1.

1. What is a partial derivative?
2. How, in general, is partial differentiation performed?

3. Doesg—;-g%equal %22 Itso, why? If not, why not?

4. If w=f(p, q, r), and %—’: is evaluated in terms of p, ¢, and r, and we then learn
‘that a certain special relationship—extraneous to the equation w=Ff (p, g, r)—exists

between p, ¢, and =, will this fact change the value of %';—”? If the special relation-

ship is such that w equals a constant, will that fact make %=O? If s0, why? If

not, why not?
5. Explain the meaning of, and the need for, the subscript notation,



CHAPTER II.
SUCCESSIVE APPROXIMATIONS.

An equation which determines the.numerical value of a quantity
may generally be expressed in a variety of alternative ways. Thus
the fact that z is the square-root of w may be expressed:

(a) 2=+ Vw

®) x-‘f-o

&L= WY
1,1

y-E-

Here (a) defines z exzplicitly; (b) defines z implicitly; and (c) consists
of simultaneous equations in z and vy, each defined as a function of
the other.

Forms analagous to (a) are not always forthcoming. Consider, for
example, the determination of a number z, such that z is equal to 500,
plus 1,000 times its own trigonometric sine, z being measured in
minutes of arc. There is no known explicit form for z. We have,

however:
() z=500+1,000 sin z.

z=500+y
(e) {y- 1,000 sin

z=500vy
(6) {y=1+22
=gin z

An implicit equation may frequently be replaced by a system of
equations (similar in general to equations of the sort ¢) so chosen as
to be convenient for solution by a computational procedure known as
“‘successive approximations.” This, as its name suggests, is a method
of starting with an apt number, largely arbitrary, and by successive
substitutions -securing a sequence of approximate evaluations of z,
approaching the precise value to within any desired degree of precision

14



TI. SUCCESSIVE APPROXIMATIONS. 15

For example, extract the square root of w by the following equa-
tions:
y="
V=
1
=3 (y+2)

2=1I.

Expressed as a formula:
w

=z

1
Ta1 =3 (Ya+2a)

Extracting the square root of 2 by this pair of equations, first
assuming 2 to be approximately its own root, gives the following suc-
cessive values: :

n z y
1 2 1

’ 2 3 %
3 %] 54
4 5%

and so on. Expressed in ordinary language, we have the following
rule for the extraction of square root: Divide the number by an ap-
proximation to the square root desired; the arithmetic mean of the
divisor and quotient is a new approximation.

It can be shown that if any approximate square root checks with
the preceding approximate root to » figures, then the new approxi-
mate root is correct to at least 2n-1 figures. -

. Had a negative value been taken initially for z,, the negative
square root of 2 would have been approached. The separating value,
zero, causes the method to fail, as one would expect.

An attempt to extract the square root of 2 by the equations:

-1
y z
T=wy
produces the following results:
n z y
1 2 3
2 1 1
3 2 3
4 1 1
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and so on. A similar repetition would occur for any initial value for
z, other than zero or infinity. This shows that not all sets of simul-
taneous equations are adapted to solution by successive approxima-
tions.

The method of successive approximations has the advantage that
the accuracy of each step is independent of the accuracy of the pre-
ceding step. A mistake in any single step, therefore, while it may
prolong the work, will not vitiate the final result.

PROBLEMS.

(15) Extract the square root of 100, taking 25 as the approximate
square root and carrying each division to three decimal places. Con-
tinue until two successive answers check to three decimal places.

(16) Assume that 1.41459 is an approximation to the square root
of 2. Perform one step of getting the root with greater precision,
and give the result to only the number of places certain to be correct.

(17) Replace z=500 +1,000 sin z, by the system: :

¥ =2,000 sin z
z=% (1,000 +)
r=z
and use as formulas for successive approximation:
| Yn = 2,000 sin z,
xnﬂ=% (1,000 +yn)

z is expressed in minutes of arc. Find z and y correct to the nearest
unit. :

(18) y is a tabular function of the time, t. The following is a tabu-
lation showing the value of y corresponding to each of certain values
of t.

t y a b ¢
60 1,569.4 .
62 1,052. 4 —517.0
64 512.5 —-539.9 —-22.9
66 —46.6 —559.1 —19.2 +3.7

a, b, and ¢ are, respectively, the first, second, and third differences of
y; 1. e., the a of any line is obtained by subtracting, from the y of
that line, the y of the line before; the b of any line is obtained by
subtracting, from the a of that line, the a of the line before, etc.
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To find the value of ¢ corresponding to some given, non-tabular
value of y:
Let y,=the value of y at time, ¢;
Yo = the value of y at the time, ¢,;
and 4 = the tabular interval in ¢.

Representing by At the value of t—:;.é, which is to be considered with
its algebraic sign, the formula to be used is:

= yt
6. At=—77TAt —.e +At) @ +At)

2+79] 31

where a, b, and ¢ are the values taken from the same line on which ¢,
and y, occur. The Af so obtained must be multiplied by %, to obtain
—to.
The formula is solved by successive approximation, the first
approximation being
At=t"Ye
a

Find the value of ¢ corresponding to y,=0, using {,=64. Check by
using ¢, = 66.

This formula, obtainable from the result of problem 30, page 31,
may be used to mterpolate in either direction from any tabulated
values, but it requires the use of ““receding differences;” i. e., differ-
ences that, in the method of writing used above, occur on the same
line with ¢, and y,.!

At the close of Chapter IV problems will be glven involving a com-
bination of numerical integration and successive approximations.

QuesTioNs ON CHAPTER II.

1. Define “‘successive approximations.’’

2. Give the rule for extraction of square root.

3. Is any set of simultaneous equations solvable by successive approximations?
4. What is the test of solvability?

5. What are the two chief advantages of this method?

1 When it is required to interpolate forward from the first item in a table, e. g., downward from the =60 in
the table above, the formula for “advancing differences’” must be used with the corresponding values of
¥, 6, b, and ¢; . g., in this case, y=1,569.4; a=—517.0; b= —22.9; and c=+3.7. The “advancing difference’’
formula may be obtained from 6 by changing the sign of every At throughout the equation, and o( the
odd-ordered differences, ¢ and ¢. See Supplement H.

24647—21. 2




CHAPTER III.
EFFECT OF DIFFERENTIAL VARIATIONS.

This chapter deals with the mathematical determination of the
effect of a disturbance, on the subsequent motion of a particle which
moves (except for the disturbance) according to some definite differ-
ential equations of motion. .

Let us consider a particle moving in time, along a plane trajectory.
‘““Trajectory’”’is here used in the general sense of the path of any moving
particle, rather than in the specialized ballistics sense of the path of
a projectile, or the still further specialized sense which will be the
meaning employed in later chapters, namely, the path of a projectile
moving under certain so-called standard conditions as to atmosphere,
wind, gravity, etc.

Reverting, then, to the motion of a particle along its trajectory,
it is evident that at any given instant of time (f) there will be a

£ F uniquely corresponding value

of z, y, 2/, ¥, 2, ¥, ete.,
where z and y are the coordi-
nates of the particle, 2’ and

G C 4 the two components of
velocity, 2’/ and y’’ the two

components of acceleration,

A etc. Primes are thus seen
FIG. 1 to represent time derivatives,

and will be used in that sense throughout this book. In this chapter
the general symbol » may be used in place of z, y, z’, y’, '/, and y"’/,
in theorems true as to any of them. Hence u, also, is a function of .

In the illustrative examples of this chapter, ¢,z coordinates and
t,y coordinates will frequently be employed, in order that the student
may become accustomed to considering the elements of the tra-
jectory as separately plotted against time, and to using time deriva-
tives.

In the case of motion of the sort which will be considered in this
book, and in fact in the case of most motions, the values of z’/, y'/,
and higher derivatives are, in the absence of disturbing canses, de-
termined, for any instant ¢, by the values of z, ¥, 2’ and y’, or some
of them; and hence z’/, y'/, etc., need not be discussed for the
present.

The path of the particle will, of course, be a single curve, which may
be graphed by plotting y against z. But a chronological record of its

18




III. EFFECT OF DIFFERENTIAL VARIATIONS. 19

motion may be represented more completely by four curves, obtained
by plotting z, y, #’, and y’, respectively, against ¢.

Consider now any one of these four curves, represented by ABQ
in figure 1. '

Suppose a disturbance from B to E, so that the curve takes the
shape BE during the interval of disturbance, and suppose that
thereafter there is no further disturbance and the form of the curve is
EF. This is the general case. The amount of the total disturbance
up to any instant is the difference in ordinates between the original
undisturbed curve ABC and the disturbed curve BEF, such as HI
or GE.

For convenience, disturbances may be treated as of three sorts:

(a) Those disturbances which produce a finite effect in a single
instant; as, for instance, if the curve took the shape ABGEF.

®) Those disturbances which vary during the total time of dis-
turbance, so that if the total time be divided up into an infinite
number of equal infinitesimal time intervals (d¢s), an infinitesimal
part (déu) of the total disturbance (3u) will occur during each dia,
and the total disturbance may be represented as:

6u=JZr ddu, or as

T ddu
b= N dts;

where 4, is the time the dist.urbance starts and 7' is the time it ends.
This is the most general case. :

(¢) Those disturbances of which a proportional part oocours during
any part of the total time. These may be regarded as a special
oase of b.

déu =¢, dia

ou =c, (T—to)t

where ¢, is some constant.!

It is essential that one element of the trajectory be considered as
remaining unvaried, so as te furnish a basis for measuring the varia-
tions of the other elements. Accordingly time will be selected for
thxa purpose Both the time (¢) of which the other elements (z, ¥,

e, y, 2", y", eto.) are functions, and the time (¢.) at which a dis-
turbance occurs, will be considered as unaffected by the disturbance.
Aoccordingly we can say that: 5 —0

t =
oty =0

t As here given, c is a special case of . But it is possible to regard both b and a as special cases of ¢
Thus, if the constant ¢, becomes the vulsbbgg, we have case b; whareas, if the time interval T'-4

becomes infinitesimal and 3u remains finite, we have case a.
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and, differentiating:
dst_ 0
Zi=
7.

dits _
dta

Let us first consider disturbances of the first sort. A particle is
moving through space according to some definite law of motion,
expressed by differential equations. At a given instant of time
(ta=t,) an instantaneous disturbance takes place, which changes
the value of z, y, 2/, and ¥’, or some of them. Thereafter, the par-
ticle proceeds according to its original law of motion, of course not
on a continuation of its original regular curve, but on another such
regular curve, also satisfying the original differential equations.

® The amount of the instantaneouschanges

W in z, y, 2/, and y’ will be designated, re-
spectively, by éz, 8y, 62/, and 8y’. Any one
L of these expressions can represent either

FiG.2 a positive or a negative change. The
changes which will be considered in any practical application of the
principles of this chapter, and the effects resulting therefrom, are so
minute in comparison with the elements affected by these changes,
that the following restrictive definition can be given: dz, 3y, ete.,
are small finite increments of z, v, etc., and are so minute that
second and higher order terms (such as 83z or ézdy, for instance)
are of no consequence, as compared with z, ¥, etc., and hence any
terms containing them may be disregarded and dropped from a sum
or series in whioh first order terms ocour.

The operator § is the operator employed in that branch-of mathe-
matios known as the calculus of variations, but not always with the
above restriotion. No further understanding of the principles and
methods of this branch than here given is necessary to the purposes
of this book.

A certain resemblance between the operator & and the familiar
differential operator ¢ will be noted. The distinction between the
two should also be noted. Consider a curve in an z,y coordinate sys-
tem. At any point on this curve, dy represents a continuous infini-
tesimal change in y along the curve, corresponding to an infinitesimal

0

change in z. % is the slope of the ourve at the point in question.

oy and éz represent a very small finite break in the curve in question.
dy and dz may be considered as taking place in an infinitesimal period
of time (dt); whereas dy and éz may be considered as taking place
instantaneously, or as cumulating during a finite time interval.
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Let us now derive some of the basio theorems relative to the

operator 8.’
8. Independent changes in w and v’ may be made at any time 5.

Proof: Consider the curve AB in =z, coordinates, and W any
given point thereon. (See Fig. 2.)

The curve can be moved up or down, thus changmg the z of W,
without changing its ¢ or its slope. Or the curve can be rotated
about W, thus changing its slope, without changing its ¢ or its z.

Thus éz and 82—:: are independent. Q. E. D.

Similarly, by plotting y against ¢, and y against z, it can Be shown
that éz, é2’, dy, and 8y’ are all independent. )
. 9. Terms containing more than one & may be dropped.

This was one of the fundamental hypotheses of the definition of
the operator é on page 20.

It will now be demonstrated that the four general formulas of
differentiation still hold true when the operator é replaces the opers-
tor d; in other words, that the small finite increments of this chapter’
obey certain laws, already familiar in form for the case of differ-
entials, although, of course, these increments are quite different
from differentials.

These four theorems are as follows:

10. © 8 (cu) =c du.

11. ’ & (u+4v) =0u+dv.

12. & (uv) =v du+u ov.
u\ v ou—u v

. YORL=1Y

Only one of these (namely, 13) will here be proved, the proof of
the other three being reserved for problems.
Proof of theorem 13:

Take the expression v #nd give v and v each an increment. Then:

5(@_&) u+du_u_vdu—udv,
v+ v V4o s

Expand this fraction by dividing the numerator by the denom-
inator, as follows:
vou—udv véu—udv &vdu, udvdy

ey T L
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From the right member all terms, except the first, may be dropped,
by theorem 9. Therefore:

u\ vdu—udv
5(5)=——v,— Q. E. D.

Next let us derive the expression for ‘‘total increment,” analagous
to the expression for ‘‘total differential”’ (formula 2 of Chap. I).
14. If u i3 a function X and Y, then:

ou ou
. u-aTY 5X+b'—Y- Y.

Proof: Let u=f (X, Y). Give X and Y the increments X and
8Y, respectively. Then:

du=f(X+8X, Y +3Y)—f (X, Y).
_ Subtract and add the quantity f (X, Y +6Y). Then:
S=f (X +86X,Y +8Y)—f (X, Y +8Y) +f (X, Y +8Y)—-f (X, Y).

Applying the law of the mean (see Osgood, p. 230) to each of these
two differences gives:

of(x+6,8X,Y +3Y), of(X,Y +6,0Y)
5’“= 1 bX vX+ bY 3 GY.

)

Now, if these two partial derivatives are continuous, each would
approach the corresponding partial derivative of f (X, Y) if 6X and
Y both were to approach zero, and hence will differ but slightly
when 8z and dy are very minute.

Consequently we may express

A (X +0,0X, ¥ +3Y) | (X, ¥) ;A;X, V),
o0X 0X 0X

(X, Y +6,8Y) = (X, V) , (X, ¥)
dY 8 ~5x Ty

Substituting these values in the expression for du, and substituting
yforf (X, Y), gives:

ou ou ou ou
du=55 3X +55 Y +3X o055 +0Y b5

from which the last two terms can be dropped by theorem 9.
An extension of this derivation gives:
ou ou ou
8u=-a—z 6X+W 3Y+a—z 8Z+ - - + Q.E.D.

d (ot
15. d—tA(W)=6(u)
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Proof: Consider a partiole moving along a ourve from A4 to P,
‘When it reaches P, at time ¢,, let z and y instantaneously receive an
increment (52 and &y, respectively) which will place the particle at
p, and thereafter let the particle move undisturbed along the curve
pD (the curves AP and pD being defined by the same differential equa-~
tions of motion). Let @ be a point on the curve AP, such that, if
no disturbance had taken place at P, the particle would have reached
4Q after a small finite time

interval At from the time it 3—>"0
left P. Letgbethepointon 7 r
the curve pDreached by the

particle, At seconds after
leaving p. Then a pair of

-changes éz+ Aéz and dy+ Q L
Ady, occurring at time £, + P~ 1 M
At, would produce the same R G

-effeot as the pair of changes / fie.3

bz and dy ocourring at timey,. A

Let 6z and dy, although arbitrary at time ¢, be thereafter con-
sidered as restricted by tne condition that at any instant thereafter
their value must be such as to produce at that instant the same
situation as would have existed at that instant, had the changes been
'made, with their initial values, at time ;. From this point, of view,
the average rate of change of 6z and &y, during the interval At, is
respectively —%z and A::J
dime of disturbance (%a).

ASz =RM— PG=GM—PR =pr—PR;
Ady =Lg— Mr =rq— ML =rg— RQ.
Let At approach zero. The rates of change at time #, thus become

- At is here regarded as a change in the

dbz dd&y.
g, @,

' dsz Az .. pr—PR
dtfhm =lim =
ddy_,. Aby_.. r¢—RQ
&g, ~lim 7 =lim =7

Now, the unaffected z-component of velocity (z’) at time ¢, is the
dimit of PR, as At approaches zero, At belng here regarded simply as
a ohange in the time () of which the elements of the trajestory are
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functions. The value of z’ at time ¢, as affected by the variations, is

z:- Therefore:
¥z') = hm(At At) F'
Similarly:
iy =lim(71-59) & - QED

16. The operator & does not always signify an independent incre-
mend.

Examples: In the expression for the total increment given under
theorem 14, if any three of the four increments are conceived of as
independent of each other, then the fourth must of necessity be
dependent upon the other three.

In equation 38 in Chapter IX, .X may be taken as a constant, and
4z as dependent on dy, 6z’, and &y’.

Throughout this book, ¢ and §¢s will be taken as zero, by theorem 7.

So we may say that changes represented with the operator § are
essentially independent, unless rendered otherwise by some express
condition of the problem confronting us.

Let us now consider the following problem. If a particle, moving
according to some definite law up to time fa, suffers a disturbance
and them moves on according to the original law, without further
disturbance, what is the relation between the value of its z at some
later time 7' and the value which z would have had at time T'if there
had been no disturbance? Let X represent the undisturbed value of
z at time 7, and let X +8X represent the disturbed value. The
problem is to express §X in terms of the dz, éy, 82’, and dy’ occurring
at time Za.

If y, 2/, and 9’ are not changed at time ¢, then 8.X is of the form
L bz, plus terms oontaining more than one 8, which oan accordingly
be dropped by theorem 9. L will have a value which will depend on
the trajectory in question and on the point on that trajeotory at
which the change 8z occurred. Thus for any given trajectory L is a
funotion of ta, but is not dependent on z.

Similarly, if z, z/, and y’ are not changed at time ¢, the resulting
4X oan be expressed as M By, etc.

If all four of z, y, 2/, and y’ are changed at time {5, the resulting X
will equal Léz+ M 6y+ Noéz’+Pdy’, plus terms containing combi-
nations of 8z, 8y, etc., which may therefore be dropped by theorem 9.
. Thus we have, as the fundamental equation for the X-effect at
time T, due to a set of small arbitrary changes in z, y, 2/, and %’ at
time tac

17. X =Loz+ Méy+ Noz’'+ Py’
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Formal expressions for L, M, N, and P may be obtained from theorem
14, but have not yet been shown to be of any practical value.

The fact the 8z, 5y, éz’, and 6y’ can each be given any arbitrary
value at any time of change (24) enables us, if we wish, to assign any
arbitrary value we please to 6X and any three of these, and then
satisfy the equation by a proper choice of value for the fourth.

18. 8.X 18 not a function of ta.

From the viewpoint of theorem 15, the values of 8z, dy, eto.,
although initially arbitrary, are regarded as restrioted so as to change
value at such a rate, during the interval

D
dts, as not to alter the resulting value of v~
$X. Q.E.D. _ P

Thus far, we have been considering -
merely instantaneous changes. Let us //r./ H

now consider the second sort of changes 'y
listed at the beginning of this chapter,
namely changes which vary throughout'a
finite time, starting as zero at the begin- A F'G‘ 4

ning of the interval. A velocity change of this latter sort is readily
seen to be made up of an infinite number of infinitesimal changes
of velocity throughout the interval. Similarly a coordinate change
of this sort is seen to be made up of an infinite number of infinitesi-
mal changes in position throughout the interval.

Consider the finite time interval, from time ?, to time 7, as divided
up into an infinite number of infinitesimal time intervals, dta. An
infinitesimal part of the total 8z, dy, éz’, and &y’ occurs during each
of these infinitesimal intervals, and thus causes an infinitesimal part
of the total X which will occur at time 7. Thus the result, at time
T, of the disturbance during any interval d¢,, is

19. dé X =Ldéz+ Mddy+ Ndéx' +Pdsy’.

It should be noted that déz, etc., are here used in quite a different
sense from that of theorems 15 and 16. Here déz means the change
which 8z undergoes along the actual disturbed path of the particle,
during the interval déa. But here also, ¢ and § may be shown to
be commutative, as in theorem 15.

Consider z plotted against {. Let ABC, Fig. 4, represent the ¢z
curve of the undisturbed trajectory. Let a disturbance start at B
changing the shape of this curve to BED. Let EF (=GH) represent
one of the infinitesimal time intervals, dia.
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The normal undisturbed rate of change of z is HI. The actual
disturbed rate of change of zis FJ. Thus:

HI=dxz
FJ =dz+6dx

Let EK be parallel to G1.
The total 8z at the beginning of the dt, interval is GE. The total
bz at the end of the interval is IJ. Thus:

diz=1]-GE=1J—-IK=KJ
ode=FJ—~HI=FJ—- FK=KJ

déz dz
(E=6(—d—t> Q. E. D.

The right-hand member of formula 19 can now be transformed by
transposing d and 3, and by both dividing and multiplying each term
by dta, and by applying this principle of commutativeness.

20.  d6X =Lox'dta+ Moy'dts+ Noz''dt> +Poy''dts

But:

Therefore:

Integrating this from ¢, to T', we get

T T T T
21. 5X = f Lowdia+ f Moy'dta+ f Noz'"dts+ f Poy"dts
b to to to

This is the formula for the effect, at time T, of changes which vary
throughout the finite time interval from ¢, to T.

For solution of any of the integrals, the 8z’, §y’, 82’/ or dy’’ therein
contained must be replaceable by something which is constant either
in value or in algebraic form throughout the interval.

Let us now consider the third sort of changes listed at the begin-
ning of this chapter, namely, changes which are proportional to
time. Consider a 8z of this sort. Then, from formula 19:

d6 X =Ldéz.

Substituting dt¢ for déz, and integrating within the limits of the
disturbance, we get:

T
sX=f Lt
te

If L is a constant, this becomes
6 X =L(T-t,).
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PROBLEMS.

(19) Prove theorem 10.

(20) Prove theorem 11,

(21) Prove theorem 12.

(22) Prove that & sin u=cos u 6u and that & cos u= —sin u du.
Suggestion: Turn to some book on the calculus, and follow the
analogy of the similar differential formulas.

QuesTIONS ON CHAPTER III.

1. What is the object of this chapter?
2. What is the meaning of the operator 3 in ballistics?
. Do formulas involving the operator d hold true with respect to the operator 5?

. When ‘would ;—g represent the slope of a curve?

3
4
5. In this chapter what is meant by the word ‘‘trajectory”?
6. Distinguish between the two meanings of déu and ddu.
7. What variations of time are considered in this chapter?
8. Is du an infinitesimal?
9. Distinguish between su and du,
10. Interpret M of formula 17 by means of formula 14,



CHAPTER 1IV.

FINITE DIFFERENCES.

Integration by finite differences is based upon the principle that
inasmuch as a derivative is a rate of change, the value of an integral
of any smooth function can be computed step by step, if successive
values of its derivative are known at sufficiently close intervals.

Suppose that u is a function of ¢, such that u can not be integrated
with respect to ¢ by means of any of the expressions tabulated in any
table of integrals. In other words, formal integration is impossible.

Let us now imagine a plotted curve with u for its ordinates and ¢

tm
for its abcissas. Then wudt is the area between the curve, the

t axis, and the ordinates at ¢t=¢, and ¢=%,. Such as area exists for
every continuous curve, and hence every continuous curve has an .
integral, even though that integral
is not expressible by means of the

/] ordinary elementary functions.
In such a case, various approxi-
: : mations are possible, some crude
? 3 3 and some so refined that they can

tua by b, 7S produce results to any desired de-
gree of precision.
FiG. 5 i All of the methods here described
require that » be first tabulated for successive finite values of ¢.

Let us consider the portion of the curve I, ing between #,—, and tx,,,
assuming the curve to be concave downward.

The entire required area can be divided up into sections such as
this. If we can evaluate each section, the sum of these evaluations
will be the value of the whole.

A first approximation would be the area under the chord.

Thus: '

Uy +U
Al'—"k_lz_‘ﬁ‘l (bepr — 1)

If we space ¢ with unit intervals, then:
2. Ay =ty + Uy

This approximation is too small.
A second approximation would be the area under the tangent at the
point (uy, ty). Thus:

Ay =y (besy—by)
28
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If we space ¢ with unit intervals, then:
23. A 2= 2uk

‘This approximation is too large, but the error is about one-half the
error of A,. A, the true area, lies between A4, and 4,. Thus:

A,>A>A,

If the curve were concave upward, the above inequality would be
reversed. In either case it is evident by inspection that:

AzzA, ;— A,

Therefore a third, and very close, approximation is:

24,+4, 1
3+ =3 (Upmey + Wy + Uy

4. Ay="TF
This is known as Simpson’s rule.!
PROBLEMS.

Evaluate the following to four decimal places, by formal integra-
tion, and by formulas 22, 23, and 24, and determine the percentage
of error in each case:

@ [

@ [Z

In using Simpson’s rule, when the tabular interval is other than
unity, the formula is:

25. 4, "%’ (U—y + 4%+ Upyy)

1Formula 24 can be proved as follows: Any ordinary function of one variable can be expressed asa
powerseries of that variable. Thus the general curve which we have been considering so far in this
chapter can be expressed:

= Do+ Pit+ PP+ DB+ D+ . . . .

This equation represents a straight line, another straight line, a8 quadratic, a cubic, a quartio, ete.,
according as we drop all but the first, all but the first two, etc., terms of the right member of the
equation. For all approximations up to and including a cubie, fomuh 24 is precise. Proof: By thla
{formuls,

f udt-g(w+m+sn)
]
By formal integration.

1h
it Dot patt
J: "‘”"[”’”‘T"’T*Tl_u

These are identical. With A sufficiently small, similar pairs of expressions, involving quartics or
higher, are nearly mutually identical, being indeed coincident in as far as the first four terms are con-
cerned, the discrepancy in the higher terms being very minute. Q. E. D.

For another proof, see Osgood, ‘‘ Differential and Integral Calculus,” 1917, pages 406-408.
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where & is the tabular interval. The area of the next section will be:

% (Usr + 4,413+ Uy45) 8nd 80 0N, 80 that the area for a series of sec-
. . h
tions will be 3 (Unmy + 4%+ 2Up g + gy + 20Uy o - MUy FU,).

PROBLEMS.
1
(25) Divide J; zdz up into ten sections, where z=z—z,. Tabu-

late z against z, and integrate by Simpson’s rule. Integrate formally,
and compare the results.
(26) wu is a function of ¢:

t\4
u-10(2+m)

Tabulate the values of u corresponding to ¢t=0, 1,2 . . . 9, 10.
10 .
Evaluate ﬁ u dt by Simpson’s rule and by formal integration, and

compare the results.

1
27) Evaluatei; 0[1 000 log ,, (10 +I%)— 1000] dt, either by formal

integration, or by tabulating from a denary log table and then using
Simpson’s rule.

Simpson’s rule is a method of numerical integration, as distin-
guished from formal integration. It is one of the simplest of a
_ system of rules that may be obtained, involving the values of the
function and its differences. Let us nowderive a method of numerical
integration which employs finite differences of various orders.

We will suppose a tabular function of ¢ and will tabulate its first
second, third, and fourth receding differences as follows, when each
difference as tabulated is obtained by subtracting the element on
the line above from the element on the same line of the preceding
column, i. e., where a,=f,—f_;; b,=a,—a_,; etc.?

¢ 0 m g;r- smogu- '1;gud dif- | Fourth dif- *
. 5 rence. lerence.
—4 S
-8 S [
-2 J-a a3 b
-1 Ja a_y by (=1 )
0 Jo Go bo Co d

3 This rule should be followed regardless of the order in which the function is tabulated, i. e., regardless
of whether ¢ increases or decreases down (or from left to right across) the page. Thus, if the tabular fune-
tion of ¢ algebraically increases as one goes down (or from left to right across) the page, the first difference
will be positive; if decreasing, it will be negative. Similarly, if the first difference algebraically mmasee
the seccnd difference will be positive; if decreasing, negative, etc.
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These differences are called ‘‘receding,” for the reason that the
differences tabulated on any line would have receded if they had
been tabulated opposite the space between the two elements of
which they are the difference; sometimes, for clearness, they are so
tabulated; but it is generally more convenient to tabulate them as
above. '

(28) Successively evaluate f_,, 1_,, f-,, and f_, in terms of f,, a,,
bo, &, and d,.

(29) From this deduce a formula for f_n.

(30) Substitute ¢ for —n. The result is the usual interpolation
formula in terms of receding differences, whereby f (¢) can be calcu-
lated with values for any fractional value of . The resulting f () will
lie on a smooth curve within the interpolation interval and, if the
true f (t) be smooth, will closely approximate it.

(31) What is the interpolation formula for ¢=4; for t=—31%

(32) In the tabulation of problem 27, what is the logarithm of
10.55% Use either interpolation formula from the preceding problem.

(33) Integrate the formula of problem 30, between the limits —1
and 0.

(34) Integrate it between 0 and 1.

(35) Integrate it between — 1 and 1.

The solution of the last three problems gives us, respectively, the
formula for integrating by finite differences and two formulas for .
integrating ahead. These are the fundamental formulas of the
method of computing trajectories by numerical integration, which
method will be discussed in Chapter VIII.

(36) Form the differences of the tabulation in problem 26 and
integrate each interval ‘‘ ahead,” using the formula of problem 34 in
the earlier stages, and that of problem 35 in the later stages.

(37) Integrate this same tabulation ‘ across,” by using the formula
of problem 33. Compare the two sets of results.®

(38) Sum up the results in problem 37 and compare with the two
answers already obtained for problem 26.

3 In numerical integration the values of the first few integrals will be inexact, due to the absence of first,
second, third, etc., differences in the integrand. To supply this lack extrapolate back for the missing dif-
ferences from such first, second, third, etc., differences as are obtainable from the tabulation. A better
method would be to rewrite the first four or five of the tabulated functions in reverse order, and difference
this new series as usual. What was the first interval being now the last, the set of differences to be used
in integrating over this last interval by the formula of problem 33 are now obtainable. The figures now on
the last line will be found to be the figures that were at the top of the columns of the original tabulation,
except that the signs of the differences of odd order are now changed. By the method here suggested the
student can construct for himself formulas for interpolating and integrating at the beginning of a table
with these advancing differences. When this is done, the rewriting of the function in reverse order may be
discontinued. One of the methods of procedure outlined in this note should be followed in thisand in all
succeeding problems of numerical integration. See Supplement H.
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(89) Substitute 1 for ¢ in the interpolation formula of problem 30.
The result is an extrapolation formula.
(40) Using the values f_,=f,—ay, fo=f,, and the value of f

1
obtained by the preceding problem; evaluate | fdt, f fdt, and
-1 o

' f dt by Simpson’s rule, obtaining the values of f; and f; by
-1

the formulas of problem 31. Compare the resulting formulas with
those obtained by problems 33, 34, and 35.

(41) Derive formula 6 used in problem 18 of Chapter II.

(42) The last tabular values of ¢, y, a, b, and ¢ for a time interval
of one second are _

t v [ . b e

41 —-23.0 —2501 —-8.2 +25

Find the value of ¢ corresponding to y=0, using the formula of
problem 41. Interpolate for y as a check, using the formula of.
problem 30. Carry ¢ to four decimal places.

(43) The following tabulated values of y’’ and z’’ from an actual
trajectory computation are given: 8-inch rifle, railway mount,
model of 1917. Muzzle velocity (V), 594.36 m/s; ballistic coefficient
(0), 4.0; angle of departure (¢), 10°. The meaning of these terms
need not be considered at this stage.

Values of z’/ and y’’ at two-second intervals:

T’ t v’
—36.8 0 -16.3
—29.4 2 -13.9
~23.6 4 -12.2
~18.9 6 -10.9
-15.1 8 - 9.9
-11.9 10 - 9.3
- 9.4 12 - 89
- 7.5 14 — 8.6
- 6.3 16 — 8.4
— 5.4 18 - 8.2

Obtain y’, 2/, y, and z for each value of ¢ by numerical integration,
checking the final results by Simpson’s rule. Initially z=0, z'=V
cos ¢; y=0, y’'=Vsin ¢.
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(44) From this data, calculate values for ¢, z, z’, and y’ corre-
sponding to y=0. As a check, get the value of y corresponding to
this value of ¢.

The formulas derived in problems 28 to 35 inclusive, and in prob-
lem 38, are to be used only with receding differences, and should be
plainly so marked in the student’s notebook.

Questions oN CHAPTER IV.

1. Define ‘‘integration by finite differences.’’

2. State ‘“Simpson’s rule.”’

3. How are first, second, etc., differences formed in the case of a tabular function?

4. What is the distinction between ‘‘numerical integration’’ and ‘‘formal inte-
gration’’?

5. From theoretical considerations rather than from the numerical results which
happen to have been obtained in any of the numerical problems, what is your opinion
of the relative precision of the six methods of numerical integration given in this
chapter? State detailed reasoning.

6. State the three formulas for integration by receding differences.

7. When should each be used?

8. What is meant by receding differences?

9. Give two methods of integrating at the beginning of a table.

4 For methods of deriving advancing difference formulas, see Supplement H.
24647—21——3



CHAPTER V.
ELEMENTS OF THE TRAJECTORY.

From the point of view of the present state of ballistics, the follow-
ing are the more important elements and features of a trajectory:

Trajectory.—This term, as here used in connection with computar
tions, embraces only the standard trajectory of the projectile, moving
in accordance with assumptions which may be laid down as follows:

(1) The earth is motionless. (The average effect of the earth’s
rotation on gravity is included in the assumed value of g.)

(2) The gun and target are in the same altitude above sea level.

(3) The preassigned standard muzzle velocity for that type of gun
is actually obtained.

(4) There is no wind.

(5) The atmospheric density varies regularly with the altitude
according to the exponential law assumed and is standard at the
muzzle (15° C.=59° F. 720 mm. of mercury, 78 per cent saturation;
1.2034 kg/m?).

(6) The action of gravity is uniform in intensity, is directed
towards the earth’s center, and is independent of the geographical
location of the gun, ¢=9.80 m/s?.

(7) In the computation of standard trajectories, the velocity-
resistance factor, ¢ (v), may be regarded as dependent only on the
velocity; the standard variation in elasticity of the air being ac-
counted for by the value of the ballistic coefficient adopted.

(8) The ballistic coefficient is a constant on the trajectory and is
as determined from experimental firing. This includes the assump-
tion that all precessional and nutational effects of the projectile
may be ignored in computation, and hence the trajectory as computed
lies in a vertical plane.

(9) The vertical jump of the gun is as assumed from observation.

(10) The atmospheric temperature (and hence elasticity) varies
‘regularly with the altitude according to the law assumed, and is
standard at the muzzle (15°C.=59°F.)!

1A question arises in connection with assumptions (7), (8), and (10) as to the use of the temperature
structure. The standard temperature structure adopted by the Ordnance Department is supposed to
approximate average conditions aloft. Firing conditions on different occasions can be accurately compared
only when reduced to the same standard temperature structure, and for convenience the above-mentioned
standard temperature structure is always used as the basis of comparison. Variations in range due to irreg-~
ularities in temperature aloft are computed by reference to this standard temperature structure. But the
@ function used in the computation of trajectories for standard conditions is assumed to be dependent only
on the velocity. This amounts to assuming, for the trajectory computation, that the temperature is the
same for all altitudes. The G function was based on a number of actual firings which were not corrected
for variations in temperature. These firings were probably made under average surface conditions, that is,
for temperature approximately 15° C.=59° F. The computed trajectories involve a ballistic coefficient,
C, which is so taken as to make the range check with firings corrected to standard temperature structure
aloft. The explicit introduction of variable temperature in the original computations, while possible
for individual trajectory computations, is not regarded as important, and is not feasible in the case of the
ballistic tables.

34
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(11) The drift (including lateral jump) is as assumed from observa-
tion.

Coordinates (z and y).—The coordinates of any point on the
trajectory, measured in meters. The abcissas (z) are measured
along the surface of the earth and are positive in the direction of fire.
The ordinates (y) are measured vertlca.lly from the surface of the
earth and are positive upward. The origin is the muzzle of the gun.
In the development of formulas and in computation, this coordinate
system is treated as cartesian, the error being negligible. Note
the difference between this conception and the tangent-plane con-
ception of the Ingalls-Siacci ballistics. The present conception,
being based on a curved earth, obviates the necessity for correcting
for curvature of the earth.

Surface of earth.—A spherical surface passing through the muzzle
of the gun and concentric with the earth.

Muzzle velocity (V).—A fictitious initial tangential velocity of the
projectile at the beginning of its flight in meters per second. The
blast may continue to accelerate the projectile for some distance
beyond the muzzle; so that the ‘‘muzzle velocity’’ is not the actual
velocity at the muzzle, but is rather a fictitious velocity which, if it
occurred at the muzzle and if there were no blast, would cause the
projectile to travel on the same trajectory as that on which it
. actually travels.

Velocity (v).—Sometimes called ‘‘remaining. velocity.” The tan-
gential velocity of the projectile at any point of its flight, in meters
per second. The z and y components of the velocity are repre-
sented by z’ and y’ respectively.

Acceleration (z'' or y’’).—The rate of increase of z’ and y’, respec-
tively (in meters per second per second), at any point on the trajec-
tory.

Time (¢).—The time in seconds elapsed in the flight of the pro-
jectile from the muzzle to any point on the trajectory. ¢ is the inde-
pendent variable of the trajectory. (When considered as the time
when a disturbance takes place, the symbol is ¢,.) -

Quadrant angle of departure (¢).—The angle measured from the
horizontal to the tangent to the trajectory at the muzzle; sometimes
called the angle of projection.

Inclination (0).—The angle measured from the horizontal to the
tangent to the trajectory at any point on the trajectory.

"Point of fall (under range table assumptions).—The point where the
projectile in its downward flight reaches the same altitude above sea
level as the muzzle.

(Geographical) range (X).—The distance in meters from the muzzle
to the point of fall, measured on the surface of the earth.

Quadrant angle qf fall (w). —The negative of the inclination at the
point-of fall. - ~
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Retardation (R).—The retardation due to the resistance of air of
standard density and elasticity. R is a function of velocity and alti-
tude.

R=vE
GH
E=-T

E is called the resistance function; G is a tabular function of v,

1 00’ C is the ballistic coeffi-
cient; H is determined by the following exponential law:

H=e

h=.0001036

Quadrant elevation.—The angle between the horizontal and the
axis of the bore just before the gun is fired.

Vertical jump.—The algebraic difference obtained by subtracting
the quadrant elevation from the quadrant angle of departure.

Summit.—The highest point of the trajectory.

Mazimum ordinate (ys).—The y coordinate of the summit.

Time of flight (T).—The time (t) from the muzzle to the point of
fall.

Angle of site.—The angle whose tangent is the ratio of the difference
in altitude of gun and target divided by the range. The angle is
positive if the gun is higher than the target. Owing to the fact that,
in the present ballistics usage, zero altitude is considered as being
the same elevation above sea level as the gun, rather than as lying
in the plane horizontal at the gun, the angle measured directly with
a transit or level is only approzimately equal to the angle of site,
although satisfactory for short ranges.

Point of splash.—The point where the projectile, in range firing,
enters the water.

Center of impact.—The average position of several points of splash.

Ballistic coefficient (C).—A purely empirical number, used in the
formula for the resistance function (E). C is a mean value (con-
stant over a given trajectory) of the reciprocal of the relative retarda-
tion. The relative retardation is the ratio of the retardation experi-
enced by the actual projectile to that which would have been experi-
enced by a certain fictitious ‘“‘standard projectile,”” moving at the
same velocity and altitude. C for any given projectile and muzzle
velocity varies only as a function of the angle of departure. C may
be represented as:

for convenience tabulated to argument ——

w
wd?
where w is the weight of the projectile in pounds, d its diameter in
inches, and ¢ the “ coefficient of form,” so-called because it is largely

C=
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dependent upoh the form of the shell. This 7 is an empirical number,
its value being determined by giving the C in the equation above the
value necessary to make the range computed with that C equal to
the actually observed range, when the latter is reduced to standard
conditions.

Ascending branch.—That part of the trajectory in which the pro-
jectile rises.

Descending branch —That part of the trajectory in which the
projectile descends.

Plane of projection.—The vertical plane including the line of pro-
jection, i. e., the tangent to the trajectory at the muzzle.

PROBLEM.
(45) Prove that— .
z'=wv cos 6
y'=vsin 6

QUESTIONS ON CHAPTER V.

1. State the eleven standard trajectory assumptions.

2. Which of these assumptions are always in error?

3. What corrections in practice have to be applied to compensate for variations
rom each of the ten assumptions?

4. Define E, and each of its elements, and explain how each is obtained.

5. Draw a trajectory lying in the plane of fire and label the following: Gun, surface
of earth, angle of departure, elevation, angle of jump, maximum ordinate, range, point
of fall, angle of fall, ascending branch, descending branch, summit. Such as have
symbols may be labeled by the appropriate symbol.

6. Draw another trajectory. Mark a dot on it to represent the projectile in flight
at the end of ¢ seconds. At that point, draw an arrow to represent the velocity. Draw
arrows to represent its components, 2’ and 3. Label z, y, and 0.

7. Define each of the elements of the two preceding questions.

8. Why does the assumption of a curved earth (see trajectory assumption No. 1,
‘“‘Coordinates” and ‘‘Surface of the earth”) make it impossible to measure the angle
of site precisely with a transit or level?

9. Why is the assumption of a curved earth (see ‘‘Coordinates’) more convenient
than the assumption of a flat earth?




CHAPTER VI
HISTORY OF EXTERIOR BALLISTICS.

The science of ballistics consists of three parts, namely: Interior
ballistics, dealing with the behavior of a projectile in the gun; exterior
ballistics, dealing with its behavior during flight; and ballistics of
penetration, dealing with its behavior while entering the target.
This book deals only with exterior ballistics.

The fundamental differential equations of “motion of a projectile
in flight have been known since the time of Newton. These are based
on the two components of acceleration, which may be represented as
follows:

Horizontal acceleration= — K cos 6
Vertical acceleration = —Rsinf—g

in which R is the retardation due to the resistance of the atmosphere,
6 the inclination (to the horizontal) of a tangent to the trajectory,
and ¢ the acceleration of gravity.

These equations look very simple, and would be if B were a constant
or were one of certain simple expressions, in terms of time, velocity,
z,y, or 6. But R appears to follow no mechanical law which can be
algebraically expressed. All that we know about R has been derived
empirically, and even the simplest available approximate expression
for R renders formal integration out of the question.

Two great obstacles to the development of exterior ballistics have
always been (1) lack of knowledge about R and (2) the difficulty of
solving the differential equations. On the basis of the methods pur-
sured in attempting to overcome these obstacles, the progress of
ballistics may be divided into three periods.

The first period, namely all the years prior to about 1865, may be
called ‘‘the algebraic period.” During this period, attempts were
made to represent R by some simple algebraic expression, and thus
to solve the equations by artifices such as those found in the stand-
ard methods of calculus. At first it was generally assumed that the
motion of a projectile through the air satisfied the conditions laid down
by Newton, under which B would vary as v2. The experiments of
Robins and Hutton, and the two sets of firings at Metz, furnished the
first real data on R at velocities sufficient for practical ballistics. As
a result, R was variously supposed to vary as the square or as the
cube of v, or as some combination of the two; and, based on these
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suppositions, there were 'devised many extremely ingenious solutions
of the equations, all of which solutions were found in course of time to
be insufficiently approximate, and most of which were very laborious.

The second period, lasting from about 1865 to the beginning of the
present war, may be called ‘‘the period of approximations.” Practi-
cally all of the physics and mathematics of this period were based
upon Mayevski’s formula:

Ayn
E==

in which R is the retardation, » the velocity, and C the ballistic
coefficient. It was assumed that velocities could be divided into a
few intervals (such as 0 to 790 f/s., 790 to 990 {/s., etc.), each interval
with its own law of resistance, and each with its own constant value
for A and for n. The experiments of this period, notably those of
Bashforth and Mayevski, and the Meppen and Gévre firings, were
accordingly directed to finding how these intervals might be taken,
and what the proper constants would be for each interval. The
solutions of the differential equations of motion (notably those of
Bashforth, Mayevski, Zaboudski, Hojel, Siacci, Didion, Braccialini,
and Ingells), attempted during this period, not only made use of the
Mayevski formula, but also, in developing the various equations,
used frequent approximations, most of them based upon the assump-
tion of a practically flat trajectory. Thus the equations were finally
wrenched into a solvable form. Our familiar Ingalls tables were pro-
duced in this manner.

- The third period, extending since the beginning of the World War,
may be called ‘‘the period of numerical integration.”  Since the time
of Euler it had been known that, by the use of numerical integration,
the differential equations could be integrated in their original form
without resort to approximations. But the approximate methods
were always thought to be simpler and sufficiently precise, until
certain phases of long-range and high-angle fire introduced during
the World War compelled a resort to numerical integration. Thus
ballistics has reverted to the first principles.

The chief differences between the Ingalls-Siacci ballistics and
present ballistic methods may be summarized as follows:

The former used a datum plane tangent to the surface of the earth
at the gun. The latter uses the actual surface of the earth as datum.

The former assumed air of a uniform density, this density being
chosen at such an average for each arc as to give the correct range
difference for each arc, and hence the correct range for the point of
fall, but not giving the other terminal elements precisely, and pro-
ducing undependable results at other points on the trajectory, es-
pecially in high-angle or long-range fire. The latter assumes the air
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of a standard structure approximating closely to observed data: less
dense the further one gets above the surface of the earth, in accordance
with an explicit mathematical law.!

The former represented the trajectory by equations which had
been simplified by a step which assumed (for the purposes of this
step) that the trajectory is a continuous straight line. This assump-
tion produced grave errors in high-angle fire. The latter solves the
equations in their strict form as originally deduced from the laws of
physics.

The former approximated the observed atmospheric resistance
function by certain rather roughly continuous formulas. The latter
uses the resistance as a tabulated function, as derived from experi-
ment, and smooth throughout.?

The former found it very difficult to obtain explicit data without
assuming?® the rigidity of the trajectory, which of course is inadmis-
sible if the target is considerably above or below the level of the gun.
The latter is adapted to furnishing just as exact information concern-
ing any point on the trajectory as concerning the point of fall, and
hence need not assume the theory of rigidity.

The former possessed no practical method of correcting the range
for variable wind aloft, or computing the weighting factors there-
for, and hence often gave results so incorrect as even in exceptional
cases to have the wrong sign. The latter can compute, with any
desired degree of precision, the effect of any atmospheric change
occurring at any point on the trajectory, on the basis of the usual
physical assumptions.

In addition, modern ballistics frankly treats the ballistic coefficient
as being purely empirical; and also introduces two new corrections,
which become important in long-range fire, namely corrections for
rotation of the earth and for changes in the elasticity of the air.
The derivation of the present day formulas is, on the whole, as simple
as the derivation of the formulas of the Ingalls-Siacci system, and
their use in the construction of ballistic tables and range tables re-
quires only the most elementary mathematics.

In view of the foregoing comparison, it is obvious why the later
method is better adapted than the earlier to the high-angle fire, the
long-range fire, and the fire at a target considerably above or below
the gun (including antiaircraft fire), which predominate in modern
warfare.

1 Cf. ““Physical Bases’’ (Ordnance Textbook 972), p. 5.

3 Cf. ““ Physical Bases’’ (Ordnance Textbook 972), p. 4.

s This assumption is: To strike a target at a different level from that of the gun, a trajectory may, without
changing its form, be rotated vertically, about an axis through the gun. See page 68.
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The numerical integration which characterizes modern ballistics
is often called the ‘‘short-arc method.” Short arc methods have
existed in the past. That of Siacci (discarded by him) consisted in
carrying his approximiations only during a change of say 5° in 6,
then starting a new set of approximations based on the value of 6
at that point, and catrying this new set for the next change of 5° in
0, etc. ‘But the words ‘short arcs’” and ‘successive approxima-
tions” should not lead the student to assume that Siacci’'s method
of making a series of approximations over successive short arcs bore
any close resemblance to modern methods of numerical integration.

Numerical integration has long been used to compute the orbits
of heavenly bodies, but was applied to the computation of trajecto-
ries in this country for the first time in 1917. The necessity for these
more exact methods was realized in this country as the result of
reports from England and France in which analogous developments
had arisen.

The development of the present ballistic methods in this country
have been eovered in the introduction.

Let it not be thought, however, that present methods have rele-

gated the familiar Ingalls tables to the discard. The Ingalls-
Siacci methods were devised for guns which were rarely if ever fired
at an elevation of over 15°; therefore their failure to apply to higher
elevations is not to their discredit. Ior fire up to 8°, the French
still use the old methods, even as a basis for their new tables. Until
the new American ballistic tables are completed, there is no reason
why the Ingalls tables should not be used for all low-angle short-
range computations.
" And even in the computation of higher-angle, longer-range trajec-
tories by present methods, the Ingalls tables have an important
place, for by their means the observed-range of range firings can be
corrécted to the range-under-standard-conditions, and the first ap-
proximate value for C' can be obtained from this standard range,
the muzzle velocity and the angle of departure.

Then, too, the muzzle velocity is obtained from the observed in-
strumental velocity by means of Ingalls’ tables, which have many
other practical uses in ballistic experimentation.

The object of the new methods is thus seen to be not to supplant
the Ingalls tables, as being something inaccurate and obsolete; but
rather to treat these tables as sufficient in the field for which they
were designed, but as needing to be supplemented in the larger field
of modern artillery fire, for which they were never intended.
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QUEesTIONS ON CHAPTER VI.

1. Give the dates and characteristics of the three periods of ballistic development.
2. What have been the two great obstacles to the development of exterior ballistica?
3. Define the three branches of ballistics.

4. Compare the present assumption relative to atmospheric density with that of
the preceding period.

6. Compare the treatment of the equations of motion.

6. Compare the assumptions relative to rigidity.

7. Compare the assumptions relative to atmospheric resistance.

8. Compare the treatment of the ballistic coefficient.
9. Compare the ccordinate systems.

10, What new corrections have been introduced by present methods?
11. Into what three parts does the study of exterior ballistics naturally divide?



CBAPTER VII.
THE MOTION OF A PROJECTILE.

For the purposes of the computation of trajectories and differential
corrections, the projectile in flight is treated as a particle. The
motion may thus be confined to the plane of fire, and the various
effects of the oblique presentation of the projectile to the air (i. e.,
drift and the range effects of yaw) may be temporarily disregarded.
Drift is subsequently treated as an empirical deflection correction;
and the range effect of yaw will probably be treated as a differential
range correction when the gyroscopic action of the projectile has

been studied somewhat further than at present.

- The atmospheric retardation of a projectile in flight in still air
depends upon three things, viz., the velocity of the projectile, its
physical characteristics, and the density of the air. Then the at-
mospheric acceleration (i. e., the negative of the retardation) can be
expressed as follows: '

26. . a=-—-T,—

where F'is a tabular empirical function of v. This is the F of the
Siacci ballistics, and is not to be confused with the E (formerly
represented by F) of present ballistic methods. H represents the
actual density in terms of standard density, and C is an empirical
constant (different for each projectile), employed to make the
acceleration correspond to the physical characteristics of the pro-
jectile.

By throwing all the effects of a change in velocity into F, then H
and C can be made independent of velocity. By regarding the
atmospheric density at tlie gun as constant, H becomes a function
of y (i. e., the altitude of the projectile above the level of the gun).
The exponential function (H=10-%%"4v) has been found to be a
close enough approximation to the physical facts for all practical
purposes. C is conceived of as an empirical function of the charac-
teristics of the projectile, and is constant over any given trajectory.

For standard density, H becomes unity. For the so-called stand-
ard projectile, C'is unity.! Thus F'is the acceleration of a standard
projectile, traveling through standard air, at velocity v.

1 This sentence 18 to be taken as the definition of “standard projectile.”” A standard projectile may be
of any form, weight, etc., provided only that its C is unity.

43 -
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For convenience (as will later appear), F is replaced by vG¢, G
thus being the ratio of retardation to velocity of a standard projectile
traveling through standard air at velocity v. For further con-

venience, the argument of the G tables'is %O

Now it has been found by observation that the true @ is practically
dependent upon velocity alone, regardless of ¢, H, and 6. The
very slight effects of changes in C, H, and 6 on the true G have
therefore been taken out of ¢, have been treated as constant through-
out any given trajectory, and have been merged in the C of that
trajectory, leaving the @ function a function of v alone.

Equation 26 hecomes:

27. a=—56{!=—0—51v=—m

E being adopted merely as a convenient expression for Ciéi

The curve obtained by plotting ¢ against v, shows that this
function changes most rapidly around the velocity of sound
(v=330 m/s) and apparently has an inflection at that point. This
suggests a relation between this function and the velocity of sound,
which leads to expressing G as vB, where B is a function of the ratio
between v and the velocity of sound. This relation is not accidental.
It has a physical basis which can be derived theoretically.

This gives G the dimensions of velocity. H has the dimensions
of density. Accordingly C has the dimensions of sectional density,
i. e., weight divided by length squared.? This suggests representing

Cas %D-,y where ‘w is the weight of the projectile and d its diameter.

But to make theory correspond to observation, it is necessary te
insert an empirical factor of ignorance (i) in the denominator, hence

w
C=:p
Let us now resolve the a of equation 27 into horizontal and vertical
components, as follows:
28 {z”= — Ev cos §= — Ez’
: y'’'= —FEvsinf= — Ey’

But there is an additional impressed acceleration, namely, gravity
(—g). As this acts only vertically, equations 28 become:

( z"’ — Ex’

y'= —Ey'—g
290 'I)"' =$’2+’y,2

’

tan 0=?L,
z

I

1 Any other dimensions might be chosen for G, H, and C, provided that they combine to give correct
dimensionsto E. See supplement C.
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These are the equations of motion of a projectile at any point of
its flight, referred to cartesian axes horizontal and vertical, respec-
tively, at that point.

But the earth is not flat. Accordingly, cartesian axes, which are
horizontal and vertical at one point on the earth’s surface, will not be
so at any other. Furthermore, gravity decreases with altitude. The
question therefore arises, how to adapt equations 29 to the actual
state of the earth.

The most convenient ways would be as follows:

(a) “The tangent method.” Consider the z axis as horizontal at
the gun. The equations become (see supplement E):

n_ ,_gg_.,
' 2= —Ex R+

44 ’ 2.
30. | v'= —Ey—g+ 32+
V=gt 4y

?/’
ltan 0= oy

Where R is the radius of the earth, and g, is 9.80 meters per second-
squared. All ranges, altitudes, and slopes are relative to the axes
rather than to the earth, and the range at least must be corrected so
as to relate to the earth, even in the case of short-range fire. But
for purposes of computation, equations 29 are a sufficient approxi-
mation to equations 30, except in the case of long-range fire.

(d) ‘“The curved method.” Measure z in a circle passing through
the gun and concentric with the earth. Measure y vertically from
this circle. The equations become (see supplement E):

"_ 2 z'y
x —_EI— R +

yll= _E’:l//___go ;1390+R+

2 yx'?
R

31. $

=3yt +-

A ST
‘tano o (1 R+ . )

All ranges, altitudes, and slopes relate to the earth. For purposes of
computation, equations 29 are a sufficiently close approximation
to equation 31, except in the case of extremely long-range fire.

(¢) Trajectories could also be computed by a third method which
treats the z axis as tangent to the trajectory at the summit. This
is sometimes called ‘‘the secant method,” for it makes the z line
through the gun secant to the earth.
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All range tables now computed are based on trajectories computed
by ‘“the uncorrected curved method,” i. e., = is measured along the
surface of the earth and y is measured vertically from the surface
of the earth, but equations 29 are used as an approximation to the
more precise equations 31. The reason for adopting the curved con-
vention is expressed as follows in the Aberdeen instructions for
range firing:

““The level surface may be taken to be either the curved surface of
the earth or the tangent plane to the earth at the position of the gun.
For the purpose of the gunner, the former would be the more con-
venient in case the levels of gun and target were taken from a
contour map, and the Iatter in case the levels were determined by
sighting from the gun. As the difference would be insignificant
except at long ranges, where presumably the first method would be
employed, it is the custom at Aberdeen to determine the range for
the curved surface.”

QUESTIONS ON CuAPTER VII.

1. Why is the projectile treated as a particle?

2. Upon what three things does atmospheric retardation depend?

3. What is the ‘“standard projectile”?

4. What are the dimensions of E, H, G, and C?

5. What are the relative advantages of the ‘“tangent method” and the “curved
method ’?

6. How are the =z and y of a modern trajectory computation considered to be
measured?

7. What are the equations of motion used in computing such a trajectory?



CHAPTER VIII.

COMPUTATION OF TRAJECTORIES.
[Rectangular method.]

In modern methods, a standard trajectory is computed from
-given values of ¢, V, and C, by means of numerical integration (see
Chap. IV) and successive approximations (see Chap. II).
- The following tables are used:

Logs and -~ 100

Table of the G Function.
Log,, H= —0.000045y.

Some computers considerit quicker tocomputelog , H by subtracting
2y_0 from g, pointing off four places, and then subtracting from zero,

than it is to use the last mentioned table; accordingly the H table
may be omitted, if desired.
The following blank forms are used:*

“Trajectory sheet,” Form 5042.
“Computing sheet,” Form 5041.

z,2', 2, y,y,’ and y’’ computed as tollows: _

For each of these variables there are, on the trajectory sheet, four
blank columns, the left-hand column being for the variable itself and
the other three columns being for the first, second, and third differ-
ences, respectively.

The initial data are: The muzzle velocity (V) in meters per second,
the ballistic coefficient (C), and the angle of projection (¢). On the
first line of the trajectory sheet enter the initial values of z, 2, t, ¥,
and y’, as follows:

z =0
z'=V cos ¢
t =0
y=0
Yy =Vsin o

Then turn to the small computing sheet and compute the first
column, for t=0. On this sheet, log 2" and log y’? should be crossed
out and log v’ (which is a misprint) changed to log y’. Colog C and
g are constants throughout the computation. Colog C is obtained

1 Alternative methods of much merit are given in Supplements A and G. Of the three mcthods, that
of SBupplement G is the one at present favored by the computers of the Technical Staff.
' 47
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from the initial data; gis9.80. Onboth sheets F should be changed
to E, to conform to the approved notation. The logarithms are all
to base, 10.

The computing sheet is used to obtain z’’ and y’’ from the funda-
mental equations of motion, derived in the preceding chapter:

2 = — Ex’
y''=—Ey' —g
320 F’ _ G—H
- =0

The process is as follows: Taking the value of z' from the trajectory
sheet, look up at the same time log z’ and g 1n the table of logs

and squares. Slmilarly look up log " and 1!,00

2
Add —1’30-0 and Z 100 to get 100 With the latter, enter the G table,

and take out log @.

With y, as tabulated on the trajectory sheet, enter the H table
and take out log H; or compute log H from y without using the table.

Add log @, log H, and colog C to get log E. ’

Add log 2’ and log E to get log Ez’. Add log E and log ¥’ to get
log Ey’.

Look up Ez’ and Ey’ from their logs, in the table of logs and
squares. Be careful to give Fz’ the same sign as z’ and Ey’ the same
sign as y’.

Add Ey’ and g algebraically, to get Ey’+g.

Change the sign of Ez’ and of Ey’+g¢, and enter them on the tra-
jectory sheet on the same line as the data on which they were based.
The reason for this change of sign is that z’’ equals minus Ez’ and
not plus Ex’. Similarly for %'’.

We are now ready to begin a new line on the trajectory sheet. Our
second ¢ should usually be } second. Enter this value in the ‘‘Time”
column. Two formulas for integration ahead are available for
" breaking into a new line. This first formula is:

+
33. [" fdt=i(f¢+—;-at+15§ b¢+g—c¢+%d,)

where ¢ is the time of the last complete line and i is the time interval.
For example, if f; represents the tabulated value of z’/ at time ¢, then
the integral 1epresents the increment of z’ during the interval from
t to t+1.

In proceeding from t=0 to t=$}, we have no values of a, b, ¢, etc.,
corresponding to z'’, and so have only the rough approximation:

L 1
j;z dt==4x
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As this integral represents the increment of z’ from time 0 to time
1, its value should be entered in the @ column corresponding to z’
for time . ‘Add algebraically to the value of 2’ for time 0, and enter
the sum as the tentative value of z’ for time }.

Similarly, integrate ahead for a tentative value of y’ for 3.

We have now broken into our new line, and are in a position to
get a tentative value for y for time }, by means of the standard
integration formula

p 1
34, t_jldt—z(f, D 40d,)

Now return to the small sheet, and compute a new column, as
before, using the tentative values of z’, 4/, and y for ¢=%. Enter
the resulting values of 2’ and %'’ on the trajectory sheet on the line
for t=1%, and integrate (this time by formula 34) for z’, 4/, and .
Substitute these improved values for the tentative values previously -
set down, and repeat the computatlon on the small sheet.

Contmue this process of successive approximations wuntil you
obtain values of 2/, 2/, y, ¥’, and y’’, which check throughout. Then
integrate for z by fofmula 34. The smoothness of the differences of
z is a valuable check on the accuracy of z’.

Then proceed, in the same way, to get the values of 2, 2/, v, ¥/,
y'’, and z, for t=4, t=4%, and t=1. Each succeeding line will, of
courdge, furnish more of a, b, ¢, etc., for use in formulas 33 and 34.

After completing the line for ¢t=1, it may be well, though not
essential, to extrapolate back for values for ¢, b, and ¢ for £=0, and
repeat the computation up to ¢=1 again. This results in smoothing
out the curve and giving greater precision to the initial steps. By
using this smoothing-out process, it is often possible to start with a
one-second interval > and obtain as precise results as a quarter-second
interval would give without the smoothing-out process.

After completing the line for ¢ =14, skip a few lines, copy down
the values for z, z’, 2/, y, y’, and y’’ for times 0, %, 1, and 14, and
make up new columns of ¢ and b corresponding to each of these, but
now based on a half-second interval instead of on a quarter-second
interval as before.

Whenever third differences are available, the following formula
" for integrating ahead will be found much simpler than formula 33:

t+1
35. j:_l fat=i[2f+3 Goteitdit - - )]

It is to be noted that the first difference (a;) does not enter into
this formula, and that the increment obtained is to be added to the
value for the preceding line. For example, in integrating =’/ at time

1 See Supplement G for a method of starting at one-second interval.
24647—21——4
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20 to get z’ for time 21, add the increment obtained by formula 35
to the value of z’ for time 19. The increment, if obtained by formula
33, would be added to the value of z’ for time 20. When first using
formula 35, it would be well to use formula 33 too, and compare

results, as a check.

Go on from this point at half-second intervals, remembering that
i now equals 4. Continue the process until ¥ becomes negative,
This means that the projectile has pierced the initial plane and has
passed below the point of fall.

It is well to carry z’/ and 4’/ to hundredths, and 2/, z, ¥/, and ¥ to
tenths of meters throughout the computation.

Often during the computation, and certainly at its close, the total
increment of z, 2/, ¥, and ¥’, from time zero, should be checked by
integrating z’, z’’, ¥/, and y’’ by Simpson’s rule, preferably using
some type of calculating machine.

Usually, in computing trajectories, a one-second interval is adopted
shortly after the start, the change of interval being accomplished
in & manner similar to that prescribed for changing to a half-second
interval.

Intervals greater than one second should not be used by the stu-
dent, for the reason that data at one-second intervals are frequently
necessary for the subsequent computation of the differential cor-
rections.?

To get the terminal values of ¢, z, 2/, and ¥’ (i. e., the values: cor-
responding to y=0), it was formerly the practice to use formula 6,
and the interpolation formula of problem 30. The following some-
what analogous formulas* are simpler:

3 The present practice of the Technical 8taff (whether the method of this Chapter or that of Supplement
G is employed) is to double the interval every time the third differences in the doubled interval indicate
that fourth differences may be neglected. Accordingly, only very short trajectories are computed through-
out by a one-second interval, the usual intervals at the end being two or four seconds. The differential

corrections are seldom required to any intermediate time. When they are so required, it is less work for
the skilled computer to find them by interpolation than by retaining a smaller interval in the trajectory.

4 Taylor’s expansion of v, A.-=0 may be written strictly:
—ye=y, o -t 0t (P S [ S (e ) ]}
Similarly:
AV"'V'H_A.‘V'F'M {V”H"%‘ [V’"m"'%‘(ﬂ"’tﬁ- e .)]}

In the approximate formulas of the text, all terms in y/, and higher derivatives have been dropped. To
get a closer approximation, make use of:

Ay Y AL
” ~ (a of y”\)
v _‘._ !

yll‘+ vlll ~ y,l‘+ V”,t
This gives us:
Ay’ (a oi v’ ')At
- (V' Ay
ay=( AL )At
and similarly for Az”” and Az’, the other formulas all remaining the same.
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4 -—

“' At=— '!/A_t_ 'yl' H

Yt

Note that the At of this method equals 7At of formula 6. The
other deltas are the same in both methods.

Take the values of z, 2/, 2'/, t, y, ¥/, and y’’ from the line in which

y has the smallest absolute values, and keep a strict account of alge-

braic signs. Solve for At by successive approximations,® taking as
a first approximation:

Ay’ = yl 'tAt.

At=:-;‘q-t-
Yt
When At has been found, the terminal values are obtained as
follows:
' [ Az’ =g'" At

!
Az=(z’t+é—;—) At
T=t+A¢

y’1‘=y,t+ Ayl

37.

Skip a few lines, and tabulate the values corresponding to ¢= T.
Compute the angle of fall by the formula:

tan we= — "ﬁ -
Ty
PROBLEMS.

(46) Compute the standard trajectory which would result from the
following initial conditions:

V' =1792.47 meters per second.
0=4.0
¢=2°

6 The work on a slide rule is as follows:
(a) 8et the runner to y, on scale D.
(d) Bring ¢+ on scale C up to the runner.
(c) Opposite 1 on scale D, read the approximate At on scale C, and jot it down for a check.
(d) Opposite (a of y’+) on scale C, read the approximate Ay’’ on scale D.

(e) Opposite 3(’.+Ag'_' on scale C, read the approximate Ay’ on scale D.

(/) Bring y’.+%"_' on scale C up to the runner.

(9) Opposite 1 on scale D, read a new approximate At on scale C, compare with one found above.

(h) Repeat the process from (d) to (g), until no further shift of the slide is necessary. Algebraic signs
must always be taken into consideration. Also, be careful to see that the various figures are cor-
rectly pointed off, so that, for example, a At that should be .043 is not used as .43.

Then A¢, Ay”, Ay’, y., (as a check), Az”’, Az’, and A z can be severally read on scale D without change of

slide. They will be respectively opposite 1, (a of z*)fi, y".+AL2', r.+%. (a of 2’ )H, :".+.é%, and
z'n+-A;,v
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Start with quarter-second intervals. Do not use the smoothing-out
process described on page 49. Change to half-seconds after ¢=1%,
and to seconds after computing ¢ =3.

(47) Use the same initial conditions and half-second intervals.
After computing the line for =2, extrapolate back for a, b, and ¢
of z”’ and y’/, for t=0, and recompute to ¢=2. Change to one-
second intervals at £=3. Compare the results with problem 486,

QuEsTIONS ON CHAPTER VIII.

. What two mathematical processes are used in computing a standard trajectory?
. What tables are used? :

. Briefly, just what is a ‘‘standard trajectory’’?

What initial data are used?

What equations of motion are used?

What are the formulas for integration ahead?

. When is each used?

What is the standard integration formula?

. How are the computations checked from time to time?

RN



CHAPTER IX.
DERIVATION OF AUXILIARY VARIABLES.

A given ballistic coefficient, muzzle velocity, and angle of departure
determine a standard trajectory, all the elements of which can be
computed by the methods laid down in the preceding chapter. In
that chapter we saw that any given trajectory has, for each value of
t, a definite value for z, v, 2/, ¥/, 2’/, and y’’. The object of the
present chapter is to derive three auxiliary variables, g, », and p,
which shall each have a definite value for each point on each given
trajectory. In the next chapter we shall see how the formulas for
the various range corrections can be expressed in terms of these
auxiliary variables.

In Chapter III we saw how the effect on z at time T, due to a dis-
turbance at time ¢s, could be expressed as in equation 17:

8X=Ldéx+ Méy+ N oz’ +P sy’

This is a general expression relating to the motion of any particle
moving under any definite law and subject to a disturbance at one
instant of time. Let us now specialize this expression, as follows:
Let the particle be a projectile moving in accordance with the laws
of motion evolved in Chapter VII. Let T represent the time of the
point of fall of the standard undisturbed trajectory. Then X is the
standard range. Let A, hy, », and p respectively be L, M, N, and P,
specialized by these conditions. £ is the & of the exponential expres-
sion for H (i. e., H=¢").

\ is thus the change in range due to a unit change in z at time
ta; hu is the change in range due to a unit change in y at time t,,
etc. Thus these variable conversion factors are seen to have an
important physical significance. It is obvious that since z does not
enter into the differential equations of motion of a projectile, a
change in z at any point can have no effect other than to shift the
value of z at all subsequent points by the same amount. Therefore
\ equals unity, and the expression for a range change may be written:

38. 8X =dr+hudy+v oz’ +p oy’

The effect of acceleration changes will not -be considered in this
chapter. ’
Strictly speaking, the new range (i. e., .X +8.X) will not be the range
to the point of fall of the disturbed trajectory (i. e., the point where
53
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y=0), but rather will be the range to the point on the disturbed
trajectory where t = T. The time of the point of fall on the disturbed
trajectory will be 7'+ 3T, where 4 T is the change in T due to the dis-
turbance. The z effect, at time T, of the disturbance at time ¢,
will differ from the z effect at time T'+3T by some proportionally
very small part of the very small quantity $X, and hence this very
small part of 8X may be disregarded, by theorem 9.

In equation 38, 6X is independent of ts, by theorem 18. By
theorem 15:

du

(w) N

W'

Therefore, differentiating equation 38 with respect to ta, we get:
39. 0=z’ +h 5'y+k Sy’ + —Gz +v 61:”+gt£6y’+p8y”
A

Now, by theorem 14, since z’’ and y’’ are each a function of z’, ¥/,
and vy only:

, oz’ oz’ bz"
8= o O oy W oy %Y

’” 2 b/’
5y =-°by 5’ +by,5y+§’y 5y

40.

Let us designate gtﬁ by ', and similarly for »’ and .p’.

Substituting the values from equations 40 in equation 39 and col-
lecting the terms, we get:

’7 b 12 . , 7] b ’”
4. °=<h"’+”bazy e )8@/+(1+v T LA )sx +

(hn+p’+v oy +p oy )5?/

Now since 3y, éz’, and 8y’ were chosen independently at time #s
the algebraic law of vanishing coefficients applies, and each paren-
thesis above equals zero, whence:

AN/
hl-""""'sy i by
’ 177
42. { v=-1-% %
bzll b "
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Let us now perform the partial differentiations indicated in equa-
tions 42. Since

2/’ = — Ex’, and

y''=—Ey —g,
then,

oz'’ OF
oz E-z oz’
oz’’ OE
d ~ "oy
oz OF

43. oy’ oy’
oy’ OF
o ~ " Yor
ayu _ ,bE
d ~ Vo
oy’ LOF
=Py

Let us now perform the partial differentiations of E, indicated in
equations 43. Since

- | E=—QC,E, and
M=2z'+9", and
H=¢by,
then, .
b_E H oG -E dG bv (d log @
0% G dv’ v dv
bE G O0H E
4. oy =05y H( hH)=—hE
bE H 2@ E d@ bv —-Ey’ dlog @
oy " C'dy G dv’ v dv

Substituting the values from equations 43 and 44 in equations 42,
we get:

lu =—E@'v+y'p)

d log G
V=—1+Er— nz( 'vd'vg)

dlog @
v dv

p'=—hu+ Ep—u'y’
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These equations hold for any possible combination of &, &y, éz’,
and 5y’ occurrifig at any point on the trajectory.

In these equations, the auxiliary variables are, by their original
definition, functions of the time of disturbance, t». The elements
E, ', y’, G, and V are functions of ¢ in the original trajectory com-
putation; but it is evident that their values, for insertion in equa-
tions 45, must be the values which they have at the point of disturb-
ance, i. e., at the point ¢=¢,. This consideration becomes important
in the solution of these equations in the next chapter.

Equations 45 can be solved for any given trajectory by making use
of the terminal values of x, », and p, which are as follows:

These values are true because, at the point of fall a unit increase
in ¥ produces an increase in X equal to cot w, but a unit change in
z’ or y’ produces no change in X.

Auxiliary variables may in a similar manner be derived with re-
spect to time of flight (7') and maximum ordinate (y,). The three
sets are then distinguished by the subscripts 1, 2, and 3. |

8X =\ 0z + hp,dy +v,02" +p, 8y’
ST=0N3z+ hu,dy + v,02’ + p,0y’
8)s = N3Z + hussdy + vydz’ + pyby’

Hereafter in this book (except in supplement D) the omission of
subscripts signifies that the auxiliary variables relate to range

changes.
PROBLEMS.

(48) What are the formulas for \’,, u’,, ¥/,, and p’y?

(49) What initial, terminal, and constant values are there for ),
N, ete. ?

(50) What are the formulas for \'y, 'y, »’, and p’y?

(51) What initial, terminal, and constant values are there for ),
N, etc.? (Note that here the terminus is the summit.)

The computation of differential corrections has been simplified by
. the discovery of the following so-called ‘‘new first integral”’:

417, ' +huy +vz' +py'' =0
This may be derived as follows. Consider equation 38:

oz + hp,dy +v,82" +p, 0y’ =6X
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Restrict the four independent variables (. e., éz, 8y, éz’, and d§y’)
by the condition that they shall represent a change from point to
point on the same trajectory, in the same infinitesimal time interval,
dt. This converts the operator § to the operator d, and makes the
range change equal to zero. Thus:

dz+ hp,dy +v,dx’ +p,dy’ =0
Divide through by dt. Then:
48, ' +huy +vz'’ +py'’ =0

The similar ‘‘first integral”’ for d_’ equals unity; for T it equals

zero.

The above derivation gives the following physical meaning to the
‘““first integrals,” namely, that an infinitesimal change in the four
elements (z, ¥, 2/, and ¢’) in time d¢, which change amounts to
shifting from one point to another of the same trajectory, has no
effect on range or maximum ordinate, and makes a proportional
change in the time of flight.

Now substitute — Ez’ for 2’’ and — Ey’ —g for 4’ in equations 47.
The “first integral’”’ thus becomes:

2 +huy — E @v+y'p) —gp,=

or:
49- : z' + h[ll'y' + p,t' = ng
whence:
z’ + hll,’,l/' + “1’
P
Differentiating :

s 2" +huy +hu'y +u’
Py = q -

Substituting these values in the last one of equations 45, namely, in:

7 ! ! ! dl G
p'=—hu+Ep,—u ly( 'vodgl‘ >

we get:
1 ’” 1oy d lOg G
2+ k' + by + p = — ghp + E@ A+ Ry +p) —gu'Y v

whence comes the following equation:

vy v ’ dl ( ’ !
' =20y ﬁ‘1+[ﬂ—h’.’/ -9y’ ,vodgv l)] W+ 2 Ex,
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which is the equation used in computing the auxiliary variables.
This equation produces the value of u,’ and u, for each value of ¢,.
The values of p, and v, can then be found from the formulas:

1
py= ,)(I’ +hy u+my),

,'ll ’

K L
O %

The former of these two is derived from equation 47. The latter
is obtained from the first of equations 45.
Thus we have, as the three equations of the system:

W = zhEy'u,+[E—hy' — gy’ (‘l 13.3”0)] W +2 B

1 '
50. ”n= 6 @'+ hy'py+w'y)

’ ’
LB
v = —"5p, —

1 P T Fr

The method of solving these equations is given in Chapter XIV.

PROBLEM.

(52) Derive the corresponding equations for u,’’, p,, and »,; and

#s'’s py, and vs.
QuEsTIONS ON C'HAPTER IX.

1. Why doos the “first integral” % oqusl unity; and the “first integral” %

equal zero?

2. What is the physical interpretation of )\, hu,, u,, and p,?

3. What is the physical interpretation of the fact that A, equals unity?

4. In this book what does the omission of a subscript from the auxiliary variables
signify? ,

5. The auxiliary variables are functions of what, on any given trajectory?

6. Of what are z, y, 7/, y/, etc., functions, on any given trajectory?

7. Is it correct to state that the values of 2 and y/ used in the computation of auxil-
iary variables are functions of t,? Explain.

8. Upon what subjects of mathematics, discussed earlier in this book, is this chapter
based ? :

9. Does X 45X equal the range of the disturbed trajectory? Explain.

10. Why are the terminal values of u, », and p as given?



CHAPTER X.
RANGE CORRECTION FORMULAS.
IN GENERAL.

We have seen in the preceding chapter that at each point (¢a) on
any standard trajectory there is a unique value for each of the
auxiliary variables: \,, u,, »,, and p,.

A\, represents the change in range caused by a unit variation in z,
and is a constant. A\, =1.

hu, represents the change in range caused by a unit variation in y.

v, represents the change in range caused by a unit variation in z’.

p, represents the change in range caused by a unit variation in y’.

As only range changes are considered in this chapter, the subscripts
will now be omitted, to simplify typesetting.

- The total range change caused by disturbances may be expressed
by consolidating all the range effects of equations 38 and 21 into one
range effect, 6.X.

T T T
6l. 6 X =[8z+hpdy+vdx'+p 5y’k+f d&z+hfud8y+f vdéz' +
te Wty te

T T ) T
fpd&y’+fv6:c”th+f p oy"'dta
te to to

where the ¢, of any of the four bracketed terms is the time of the
instantaneous disturbance considered in that term, and the 7, of any
of the six integral terms is the time of commencement of the dis-
turbance considered in that term, and the ¢, of no two terms need
necessarily be the same. '

Any specialized range change will be represented as AX, with some
subscript, so as to conform to range-table usage.

In the formulas of this chapter the auxiliary variables u, v, p, and
their derivatives are functions of the time of disturbance, to. The
proper value of z’, y’, E, @, etc. (which are normally functions of ¢),
to insert in these formulas are the values for ¢ =¢a.

The formulas given in this book are all (with the exception of
some in Chapter XI) formulas for the increment in range due to non-
standard conditions. Therefore, to correct the observed range to
standard range, or the map range to range-setter range, the quantity
obtained from the proper formula must be algebraically subtracted.
This is in conformity with an agreement between the technical staff
of the Ordnance Department and the chiefs of Coast Artillery and

59
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Field Artillery that range tables shall tabulate the range effects of,
rather than the range corrections for, all nonstandard conditions other
than height of site.

EFFECT OF NONSTANDARD MUZZLE VELOCITY.

At the muzzle, :
=V cos ¢
y'=Vsin ¢

A 1 m/s increase in V increases z’ by cos ¢, and increases y’ by
sin ¢. Therefore, for §V=1 m/s:

8z’ =cos ¢
oy’ =sin ¢
Therefore, from equation 51:
52. AXv=(cos ¢+psin ¢)'A'°
PROBLEM.

(53) Derive the alternative form:

AXy= —(“ (‘OS¢

tp=0
from the last equation of equations 49.
EFFECT OF CHANGE IN ¢.

By problem 22, & cos ¢ equals —sin ¢ 8¢, and & sin ¢ equals cos ¢ ¢.
It is customary to base the correction on a 1-mil change in ¢.

8¢ =1 mil= 1019 radians. ,
. . , sin ¢ .
A 1-mil increase in ¢ decreases ' by V 1019’ and increases
y' by 7 $22% Therefore, for Ag =1 mil.:

v sin ¢

1019
, COS ¢
W=V 1610

Therefore, from equation 51:

53. AX 4= o0 (p cos = sin $)eymo
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PROBLEM.
(54) Derive the alternative form:

u' sin ¢

Vv
AX"”=1019 (cos ¢+ Ex’

ty=0
CHANGES IN ACCELERATION, IN GENERAL.

From formula 51, the range effect of variations in acceleration is
seen to be:
54. 0 X = v oz’ 'dta +f p by''dita

to

We are interested only in such acceleration changes as are caused
by variations in E, inasmuch as variations in 2’ or y’ (the other factor
of '’ and y’’, respectively) are cared for by the terms in 8z’ and 8y’ in
formula 51. Thus for the purposes of the present derivation we may
assume that z’ and y’ do not vary. Accordingly:

oz’ _ 80 G 5

oz =bE8E=—m'6E=—:' C'+ G+ T

6y"=g}EL,6E= —yE=— :3‘(—-6ﬁ7+3(’7+‘s

Substituting from equation 55 in equation 51:

55.

BC’ 66' oH
X = f +G I E@'v+y'p) dia

Substituting p’ for — E(x'v+y'p), from equations 45, we get:

T/ 80, 6G b
56. 8X=.lt: (—*Z,"i'a"l"FH)#’de

EFFECT OF NONSTANDARD BALLISTIC COEFFICIENT.

For a 10 per cent increase in C alone, formula 56 becomes:
T
AXc=] (=0.1)p'dts
te

51. AXo=0.1[ue, — pe]
EFFECT OF NONSTANDARD WEIGHT OF PROJECTILE.

An increase in the weight of the projectile over the standard weight
will increase the ballistic coefficient (C) proportionally, and will de-
crease the muzzle velocity (V) in accordance with the formula of
interior ballistics,
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where p is the standard weight of projectile, and = is one of the vari-
able coefficients of interior ballistics (approximately —0.3), not to be
confused with the Glvre n of the temperature formula (equations 59
to 64).

A 1 per cent increase in the weight of the projectile will change the
velocity by 0.01 nV, which in turn will change the range by that,
multiplied into the range effect of a 1 m/s increase in V (formula 52).
A 1 per cent increase in the weight of the projectile will also increase
C by 1 per cent, which in turn will increase the range by one-tenth
of the range effect of a 10 per cent increase in €' (formula 57). Hence:

58. AX,=0.1AX,+0.01Vn AX,

For values of n, see lesson sheet P of the Ordnance School of Ap-
plication: “Tables for Interior Ballistics,” Table A; or use the value
-0.3.

It might seem that n should equal —0.5 instead of —0.3; for if
the muzzle energy produced by a given charge of powder were con-
stant, regardless of the weight of the projectile, then:

5 p+ap) (V43Vy =1 pV?

whence:
28V__op
vV o p
5V 5p
V= —0.5 P

But a change in the weight of the projectile causes it to stay a
different length of time in the bore and alters the friction between
the gun and projectile, so that the muzzle energy is not constant.
Empirically, —0.3 has been found to give more nearly correct results
than —0.5.

In range-table firings, when the actual velocity is known, and what
is desired is the standard range, one range correction is made (by
formula 52) to correct from actual velocity to standard velocity, and
one to correct from actual weight to standard weight, using only the
first term of formula 58. The last term of formula 58 is not used,
for formula 52 covers the whole matter of velocity.

If the velocities are taken on special velocity rounds, rather than
on the range rounds, the velocity of the range rounds is obtained by
adding 8V to the velocity of the velocity rounds, 8 V being found by
the formula:

o, o

vV
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where 8p is the difference obtained by subtracting the average pro-
jectile weight of the velocity rounds from that of the range rounds.

In service firings (or in any case where the range obtained by one
weight of projectile is known, and what is desired is the range to be
expected of another weight, all other things being unchanged) the
whole of formula 58 should be used.

EFFECT OF NONSTANDARD TEMPERATURE.

A 1 per cent change in absolute temperature alone will now be
considered, merely from the viewpoint of its effect on the elasticity
of the air.

Let s represent the velocity of sound, s, the standard velocity of
sound, 7 the absolute temperature, and 7, the standard absolute
temperature for the altitude in question. A normal temperature
structure has been adopted by the technical staff of the Ordnance
Department, based upon the normal temperature which occurs at
each altitude up to ten thousand meters, when the temperature at
the ground is standard. = This temperature structure is incorporated in
a table, giving '

10®

27,
with y as an argument. At the ground 7, equals 518.4° in Fahrenheit
units, corresponding to 59° Fahrenheit.!

Represent @ as the product of the velocity by a function of 'Z .

Call this function B (%) Then:

. v
G=vB (E)
v .
60 5(3,)

Let s=8,+0s. Then:

)
G=vB (80 +53)
Expanding by Taylor’s theorem:
G=vB (s —? %g 5 +higher powers ofi—i .
- dB s
59. G@=F—Gy=—v* oo 5

It now remains to evaluate %—f and =
0

1 See ‘ Physical Bases” (Ordnance Textbook 972), pp. 12, 13. Also note, p. 34, ante.
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1]

60. G='vB=£
v

(N. B.—This F'is not to be confused with the F of modern ballistic methods, which
n many of the earlier papers was written F.)

F=A» -

G=A,
61. B=A4,
Differentiating equation 61:*

dB_d(Av?)

62. = dv =(n—-2)A" 3= (n~— 2)

Differentiating equation 60:

dB_vdG— Gd'o G vdG l) [ 'vdlogG )
dv vdv Gdv

Therefore the GAvre n may be defined by the equation:
n=v——g—d lo G+ 1.

The object of the above differentiations was to get n into the
form of a logarithmic derivative of @.

Now to evaluate %s' In the vicinity of s,, s varies as 4/r. There-
0

fore:

és or
63. —_—= 210.

Substituting from equations 62 and 63 in equation 59:

0G _ v*dB s or
_é-=—é % s—°=—-(n—2)§—1-;

A b7 of 1 per cent would make:

oG 1
a=- (n_z)m.

Substituting in equation 56:
T
64. AX,= —0.005f (n—2)u’dta.
to

! An and 7 are here taken, not as constants over certain intervals of » (¢f. Chap. VI), but rather as
smooth slow-varying functions of v. But they vary so slowly, as compared with v, that they may be
troated as constants in differentiating.
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A &7 of 1° Fahrenheit would make:

&G
.@=—(n 2)21'

Substituting this value in equation 56:

T(n—-2) ,

650 AXf= —f th

to 2"'0

Instead of using the tabular value of 7, in computing AX,, the
present practice is to use the ground value (518.4°); and then treat
AX, as though the value aloft had been used. This produces a slight
error, which is probably less than the errors in our knowledge of the
exact effects of temperature changes.

Formula 64 is simpler to compute and (as used) is more precise
than 65, and a percentage change is simpler to use with a ballistic
temperature; hence formula 64 will generally be preferred.

EFFECT OF NONSTANDARD DENSITY.

The weight of 1 cubic meter of air under standard conditions
{59° Fahrenheit, 750 mm of mercury pressure, and 78 per cent
-saturation) is 1,203.4 gm. The values 59° and 750 mm were chosen
by the Technical Staff for the reason that these values conform as
nearly as feasible to the general practice of American, British, French,
and Italian ballisticians during the World War. Seventy-eight per
cent was chosen to conform with the present practice of the Coast
Artillery. Ingalls’s Table ITI also uses 59°, but uses 752 mm instead
-of 750 mm, thus giving a density of 1,206 gm per cubic meter. Enter-
ing this table with 59° and 750 mm (i.e., 29.53’’), one gets 1.002,
which for practical purposes is indistinguishable from unity.

The exponential law (H=e¢) was derived on the assumption
that E varies as the density. And, of course, density varies as weight
‘per any unit. Therefore H, E, density and the weight of a cubic
‘meter at altitude y are proportiona.l. Whence:

. 0H _&(weight of a cubic meter)
“H™ 1203.4 H

At the ground, H is unity. For an increase of 100 gm in the weight
«of a cubic meter of air at the ground:

6H 100

7= 1——203-4=0.0831.

24647—21—75
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Substituting in equation 56:
T
66 AXx=0.0831 [ p'dta =0.0831 (ur— ).
t

Changes in atmospheric density aloft are converted into equivalent
changes in atmospheric density at the ground, by the formula:

67. Chsn_%ealoit_ equivalent ground change.
For an increase of 1 per cent in atmospheric density.
oH
T =(.01.

Substituting in equation 56:
r :
68. AX:=0.01f #'dta=0.01 (ur—pe,).
' to

It should be noted that this is the same formula as that for AX¢
(formula 57), except that it is based on 1 per cent instead of 10 per
cent and is opposite in sign.

Both the formula for 100 gm increase and the formula for 1 per cent
increase will be used in the computations of Chapter XVI.

EFFECT OF A REAR WIND.?

To determine the effect of a wind moving in the same direction that
the projectile is moving it is convenient to compare the motion of the
projectile relative to the air and its motion relative to the earth. In
other words, it is convenient to regard the motion of the projectile as
though the projectile were moving along a trajectory relative to the
air and as though this trajectory were itself moving as an entirety at
the velocity of the wind. -

If a 1 m/s wind is blowing in the direction of the z axis from time
t, to time T, the z component of the velocity of the trajectory relative
.to the air at time ¢, and thereafter will be 1 m/s less than the z com-
ponent of the velocity of the trajectory relative to the earth at that
instant, which amounts to considering the z’ of the projectile as re-
ceiving at time f, an increment (8z’) of —1; but the trajectory relative
to the air is itself moving as an entirety at a rate of 1 m/s from time¢,
totime 7. Thus the effects of a 1 m/s wind are two: (¢) A minus 1 m/s
5z’ at time ¢,; (b) a plus horizontal movement of the entire system
at arate of 1 m/s for 7'—¢, seconds. From formula 51, we take the
terms:

T
5X = f Azt voz!
te

8 Campare ‘‘ Physical Bases” (Ordnance Textbook 972), pp. 11-12.
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Now as, by (b) above, 8z is changing at the same rate as t5,déz =dts
By (a) above, 82’y = —1. Therefore:

69. 8X = [dtat (=)= Tty
For a 1 m/s wind blowihng throughout the trajectory:
0. AXyy=T-»,

d EFFECT OF A VERTICAL WIND.

Similar reasoning applies to the effects of a 1 m/s vertical wind.
(1) A 3y’ of minus 1 m/s at time ¢,; (2) an upward movement of the
entire system at a rate of 1 m/s for T—f, seconds. There are no
variations in z or z’.

The effect of the decrease in 3’ is:

The effect of the upward movement of the system is:
T
X = f hu dy.
W
But, as Jy is changing at the same rate as s, ddy =dis; hence:
T
8X = [ it
Jto

Thus the tofal range effect of a 1 m/s vertical wind, blowing from
time ¢, to time 7T, is:

T
71 AX.y=h f udta— e
te
For a 1 m/s wind blowing throughout the trajectory:

72. AXwy=h f' udta— oy,

CURVATURE OF THE EARTH.

In the Ingalls-Siacci system of ballistics, the practice was to com-
pute a trajectory by means of rectangular-coordinate equations of
motion based upon the assumption of a flat earth, and then apply the
trajectory to the curved earth by referring it to a rectangular grid,
whose z axis was tangent to the earth at thegun. Of course, insuch a
system, the farther one got from the gun, the farther the surface of
the earth dropped away from the z axis; thus curvature of the earth
increased the range by AXy=0.07848 R’ cot w, where R was the
radius of the earth.
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But the present convention is that the trajectory, computed exactly
as before, is now applied to the curved earth by referring it to the
orthogonal curvilinear grid discussed in Chapter VII.

Under the tangent system, curvature was taken out of the range-
firing range to get the tangent range, all range-table computations
were based on the tangent range, and then the curvature correction
had to be added in again.

Under the curved system, the curvature correction does not have
to be either taken out or put in. Inasmuch as the system is curved,
curvature of the earth may be disregarded.

SITE AND COMPLEMENTARY SITE.

In the Ingalls-Siacci system of ballistics, the practice was to
treat a difference in altitude between gun and target, by assuming
that a trajectory whose chord inclined from the gun to the target
would have the same shape as though its chord were horizontal.
This assumption was called the ‘‘ theory of rigidity of the trajectory.”
It was defined by Col. Ingalls as assuming ““ that the relations existing
between the elements of the trajectory and the chord representing
the range are sensibly the same, whether the latter be horizontal or
inclined to the horizontal.”

It is obvious that, all other things being equal, a projectile will
go farther if the ground slopes down from the gun, and less far if the
ground slopes up from the gun, than if the ground were level.
Assuming rigidity, and an angle of site (i. e., the inclination of a line
drawn from the gun to the target; positive if up) of e degrees, the
correction to target range would exactly equal the error caused by
a change of emils in ¢.

AX =[AX4] sg=e

But the theory of rigidity is not sufficiently precise for some
phases of modern fire (see Gunnery for Heavy Artillery, pp. 66-69;
Gunnery for Field Service, pp. 23-25). The error in the theory of
rigidity was formerly corrected for by expressing the effect of this
error in terms of the change in elevation necessary to overcome it.
This correction was known as the ‘‘complementary angle of site,”
the words ‘‘complementary angle’’ obviously not being used in their
geometrical sense. The corrections for curvature, site, and comple-
mentary site were often combined into one correction.

The present practice is to derive a single range effect from the
coordinates of a computed trajectory. The.tollowing formulas are
used:

=2
tan e o
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3. AX =z2—-X

The procedure is to plot e against z— X for each of the last few
computed points of the trajectory, draw a smooth curve, and from
it build up a site-correction table.

Whether the correction based on these formulas be called ‘‘the
correction for site’’ or ‘‘the correction for site and complementary
site,”’ it covers all of the effects of a difference in altitude of gun
and target.

PROBLEMS.
(55) Prove that— i
68

See the foregoing derivation of formula 59 for effect of nonstandard
temperature. Suggestion: by performing the indicated division,
expand s.,—:Ké) -into two terms, one of which shall be g- By

[]

Taylor’s Theorem for a single variable, expand B into a

i)
8o+ As
series of B (;2) and its derivatives.

0.

(56) A shell weighing 15.96 pounds attains a range of 5,000 meters.
A 10 per cent increase in ballistic coefficient would increase that range
by 164 meters. A 1 m/s increase ih muzzle velocity would increase
the range by 2.6 meters. What range would be expected of by a
projectile weighing 15.5 pounds, the powder charge and angle of
departure remaining the same?

(567) A shell weighing 16.1 pounds is fired at the same elevation
and in the same gun as that of the preceding problem. The muzzle
velocity is measured and found to be 20 m/s above standard. What
range should be expected ?

QuestioNs ON CHAPTER X.

1. What is the difference between AX and §X?

2. Give a complete list of the range effects discussed in this chapter, and state as to
each the unit change on which it is based.

3. How does the correction for weight of projectile in range-table firings differ from
the correction used in service firings, and why?

4. Between what limits should the formulas of this chapter be integrated?

5. What are the proper values of 2/, ¥/, E, G, etc., to insert in the formulas of this
chapter?

6. How is curvature of the earth corrected for?

7. Is complementary site included in the correction for site?

8. Given that AX ,, =50, map range==10,000, what range would you set for & vertical
wind of +2 meters per second?

9. Would it be possible for AX, to equal —23? Give reasons.



CHAPTER XI.
ANGLE OF DEPARTURE CORRECTION FORMULAS,

EFFECT OF JUMP.

Vertical jump equals angle of departure minus angle of elevation.
It is therefore positive if up. The gun is laid by the angle of eleva-
tion, but it is the angle of departure which controls the shape of the
trajectory.

Jump obviously affects the range through the formula for AX,.
The object here will be, however, not to evolve a formula for the
range effect of jump, but rather a formula for measuring the jump

N
“TRAJECTORY =<~
t.meoroc £ J JUMP
————— (N COSE’
................ P
SCREEN
FIG 6
itself; inasmuch as it is ¢, rather than X, which is always corrected

for jump.

A special blank form is used at Aberdeen Proving Ground for the
computation of jump. Most of the symbols.used conflict with other
symbols of ballistics, but are nevertheless here given just as they
appear on the form.

8 is the horizontal distance, in feet, from the muzzle to the jump

screen.
E is the elevation at which the gun is laid for the jump firing.

D=8 sec E.
J is the measured vertical error, in inches, at the jump screen, +

if up.
8 is the distance from the trunnion axes to the ruzzle.

t is the time of flight from muzzle to screen, i.e. approximately %

N is the fall, in inches, due to grawty= gt’= (32.16 - 12. )=

193 #.
70
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The pivot of jump has been empirically determined to be about
halfway from the trunnions to the muzzle, rather than at the trun-
nions, jump being due to a combination of rotation about the trunnions
and other motions, principally recoil.

7 is the angle of jump.

sin 7.=(N+J) cos (sE+J)
12 (D+§)

the reason for the 12 being to reduce (D +%) to inches like (N +J).

But j is so small that cos (E+9) is practically cos E, and j (in

1
3158 Therefore

17,. Sin 1/ is

;23438 (N+J) cos E_ 573 (N+J) |
12 (D+8§) (2D +38) sec E

EFFECT OF CANT.

Although the most marked effect of cant (i. e., trunnions out of
level) is the effect on deflection, yet it also has a slight effect on the
angle of departure.

See the “effect of cant” in Chapter XII. From the development
there, it is evident that cant has the following effect on angle of
departure:

u.

A¢ (in mils) = —1019 cos 7 (tan ¢ —tan E)
Converting into minutes,
75. Ap= —3438 cos i (tan ¢ —tan E)

The i of these formulas is the angle of cant, and has no relation
to the form factor 4, nor to the 4 of the jump formula.

When laying a gun with a quadrant or with a sight shank that
is capable of being leveled, the indicated elevation is the true eleva-
tion, and no range correction for cant need be made. Even in the
case of guns laid by range drum or by nonlevelable scale, the correc-
tion is apt to be inappreciable unless the trunnions or base ring are

badly out of level.
ANGILE OF SITE.

The point of splash in range firing is of course at a lower level
than the gun. The exact difference may be ascertained by com-
paring the height of the trunnions above mean low water and the
height of the tide.
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The difference will be so slight that the ‘“theory of rigidity’
(see p. 68, ante) may be assumed without necessitating any ‘‘com-
plementary’’ correction.

This difference, divided by the range (being careful to convert to
the same units), gives the tangent of the angle of site. (See the
definition of ‘“angle of site’’ in Chapter V.) As small angles are
approximately proportional to their tangents, and as the tangent
of 1’ is y74y, then the angle of site (in minutes) is equal to the above
ratio multiplied by 3438.

This angle must be added to the quadrant angle of departure to
give the ¢ which would have produced the same X, if finng on the

level.
IN GENERAL.

It is often convenient to know what elevation correction is necessary
to offset any one of a number of nonstandard conditions affecting
range.

Suppose, for instance, that the disturbing cause is a 1 m/s helping
wind. This is found, by formula 70, to produce a certain AX.
Find, by formula 53, what A¢ will produce AX, numerically equal
but opposite in sign. This A¢ is the desired correction.

Similarly can be found the elevation correction necessary to offset
any other disturbing nonstandard condition.

PROBLEM.

(58) A gun is laid at an elevation of 2°. From the muzzle to the
jump screen the horizontal distance is 100 feet. The length of the
gun from trunnion axis to muzzle is 20 feet. The shell pierces the
jump screen 30 inches above the point of bore sight. The muzzle
- velocity is 2,000 foot-seconds. What is the jump? :

QuEesTIONS ON CHAPTER XI.

1. Why is the pivot of jump considered to be halfway between the trunnions and
the muzzle?

2. Define vertical jump.

3. Define cant.

4. Define angle of site.

6. How do you find the elevation correction necessary to offset the range effect of
some disturbing cause? :

6. In deriving the jump formulas, why is g taken as 32.16, instead of 9.80, as in
the rest of the book?



CHAPTER XII.

DEFLECTION FORMULAS.
EFFECT OF CANT.

Cant occurs when one trunnion is higher than the other. The
tangent of i, the angle of cant, is obtained by dividing “‘right wheel
above left’’ by the ‘“dis-
tance between levels.”

Suppose a gun is ele-
vated E degrees and bore-
sighted at a point on a
jump -screen S + g8 feet
from its trunnions, and
then is slowly elevated to
¢ degrees. (See Fig. 7.) SIDE VIEW OF GUN AND SCREEN (TRUNNIONS LEVEL )
If the trunnions are level, FIG.7
the line of bore-sight will
travel vertically up the screen a distance equal to

(S+s) (tan ¢ —tan E).
Notice that in the case of cant the pivotis at the trunnions. But this

i | -
L _-RIGHT ABOVE LEFT R
‘4_,‘/ DISTANCE BETWEEN POINTS

Q- -GUN

REAR VIEW OF GUN

(TRUNNIONS INCLINED) D ---eod G
FIG 8 REAR VIEW OF SCREEN
FIG 9

vertical line will be tilted 7 degrees to the left, if the trunnions are tilted
through ¢ degrees by raising the

D right trunnion above the left.
G (See Figs. 8, 9, 10.) The line of

Sommmmmmeese <§+s ---—---- --—-«  bore-sight will now cut the screen
GROUND PLAN (S+s) (tan ¢—tan E) sin 1 feet
FIG 10 to the left of its original position,

and hence will have a deflection
whose sine equals ( B
tan ¢—tan
S+8) g
sin D= — (tan ¢—tan E) sin ¢,
the minus sign being introduced because, deflection to the right being
taken as positive, and ““ right wheel above left’’ being taken as posi-
tive for cant, a positive cant produces a negative deflection.

sini, i.e.,

73
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Now, since small angles vary approximately as their sines, and
since the sine of 1 mil is gy,
D (in mils) =222 1019 sin D
76. D= —-1019 (tan ¢—tan E) sin 1.
EFFECT  OF LATERAL JUMP.

Let I be the lateral jump, in inches, measured on the jump screen,
plus if to the right. Let  be the deflection angle of side jump. Do
not confuse this ¢ with the form factor ¢, nor with the 7 of the cant
formula. The other symbols are the same as those used in the dis-
cussion of jump in Chapter XI. Notice that here, as in the case of
vertical jump, the pivot is taken as half way between the trunnions
and the muzzle.

The horizontal distance, in feet, from the pivot to the screen is
S+-;— sec E. But % is so small compared with S, and sec E is so

nearly unity, that the expresssion may be written :S'+% without

material error. 7
8
12 (S + 5)

sin 1 3438 1 573 I
0 ,= == .
s 1 12(“_%) 28+s

sin 7=

¢ (in mins.) =

7. i (in mils) =21—.79%‘

. Lateral jump is usually not computed, but is included in the
‘‘drift’’ as tabulated in range tables.
EFFECT OF CROSS WIND.

A 1 m/s cross wind is treated much the same as a 1 m/s range wind
or a 1 m/s vertical wind (see Chap. X} A cross wind is positive, if
blowing from left to right.

A+1 m/s cross wind, blowing from time #, to time 7', causes the
trajectory relative to the air to bend abruptly to the left at time ¢,

by an angle whose tangent is ;1,- Therefore the deflection in meters
at time 7" due to this cause alone will be to zr—z, as 1 toa’y; i e.,
-(ﬂ,:jﬁ to the left. '

Z'ty
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But the trajectory relative to the air will itself be moving to the
right at a rate of 1 m/s for (I'—1,) seconds, or a distance of (T'—{,)
meters. Therefore the net deflection, in meters, is:

X—z

I,

8. Dy=T—t,—

‘the values of z and =’ being those at time ¢,.
In mils, assuming the wind to blow throughout the trajectory,

: T 1
. 79, D.=1,019(7_ )

2’
DRIFT.

Drift is due to the gyroscopic action of the projectile.

Drift is at present treated as wholly empirical. In range firing
the total angular deviation from the line of fire is measured (posi-
tive if to the right, negative if to the left). From this is subtracted
algebraically the effects of cant and cross wind. The remainder is
the drift (plus lateral jump, of course, which, for range-table pur-
poses, is usually included in the tabulated value of drift).

PROBLEM.

(59) In the firing of problem 58, the right trunnion was 1 inch
above the left, the distance between the points where the levels were
taken being 3 feet. The shell piarced the jump-screen 9 inches to
-the left of the point of bore-sight. The gun is then elevated to 10°
.and attains a range of 6,421 meters. There is a 9.5 m/s cross wind
blowing from left to right. The time of flight is 17.1 seconds. The
-shell lands 40 meters right. What is the drift in mils? For the
purposes of this problem do not include the lateral jump in the
drift.

QuesTioNs oN CrAPTER XII.

1. If deflection is given in meters, how should it be converted to mils?

2. Why, in the case of cant, is the pivot considered to be at the trunnions?
3. What is the cause of drift?

4. How is drift determined ?

5. What does the range-table value of drift include, besides drift proper?



CHAPTER XIII.

ROTATION OF THE EARTH.!
IN GENERAL.

. The rotation of the earth has two effects on a projectile in flight:
(@) The higher the projectile goes, the more must its velocity be
altered, in order to maintain the same linear velocity relative to the

FIG il

earth; (b) centrifugal force offsets to some extent the attraction of
gravity. '

One of the assumptions on which the computation of a standard.
trajectory is based is (see Chap. V): ‘‘2. The earth is motionless.
(The average effect of the rotation of the earth on gravity is included
in the assumed value of ¢.)”

The object of the present chapter will be to ascertain the difference
between equations of motion based on the assumption of a motion-
less earth and those based on the assumption of a rotating earth,
to separate out from this difference such effects as the standard

1 For a nonmathematical treatment of this subject from ther viewpoint, see ‘“Physical bases’”
(Ordnance Textbook 972), pp. 9-11.
76
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trajectory includes in ¢,, and to base a rotation correction on the
remainder.

Inasmuch as most discussions of the rotation of the earth adopt
the convention of rectangular axes (the z axis being tangent to the
earth at the gun), and as the corrections thus derived can be shown
to be equally applicable to the convention of a curved grid (with z
lines concentric and ¥ lines radial), this chapter will develop the cor-
rections on the rectangular basis.

Let us consider a projectile fired from a point whose latitude is I,
in a direction whose azimuth is a, measured clockwise from the south.

Let us consider two sets of rectangular axes, coincident at the
instant the gun is fired. The origin is on the equator at the same
longitude and altitude above sea level as that of the gun; the y
axis is vertical upward; the z axis is horizontal to the east; the 2
axis is horizontal to the south. Inasmuch as the orbital motion of
the earth has a negligible effect upon the tra,]ectory, we shall con-
ceive of the axis of rotation of the earth as fixed in space.

Now consider that one set of axes (designated by m) moves with the
earth; and that the other set (designated by f), although coincident
with the moving set when the projectile leaves the gun, thereafter
remains fixed in space, and does not rotate with the earth.

Let ¢ be the time which has elapsed since the gun was fired. Let
R be the radius of the earth. Do not confuse this R with the symbol
for retardation. Let @ be the angular velocity of rotation of the
earth.?

At time £, the angle between the two sets of axes isQ¢a; so, by the
familiar formulas of analytic geometry:

80. m+RB=2¢ sin Qs+ (¢ + R) cos Qi,

Zm=2
The subscript m means referred to the moving set of axes. The

subscript f means referred to the fixed set of axes.
Diﬁergntiating equations 80, we get:

{ ZTm =123 COS Qs — (yr+ R) sin Qs
Y

81. y’mm =24 sin Qa4+ ‘ylu cos QUr+ 2,2

x’mm=:c’“ Ccos QtA—y," sin Qta —Ym —RQ
2’ mm =21t

The meaning of the double subscript is as follows: For instance,
z’yy means the time derivative of z;, which derivative is left referred
to the fixed system of axes. If we were to transform z’¢;, by formulas
analogous to equations 80, so as to refer to the moving system, we
should get z’¢m.

2 Since there are 86,164 mean solar seconds ln a sidereal day,
Qe m— .00007292 radians per second.
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Differentiating equation 81, we get:

'y"mm =2’/ 8in Qta+ y"m co8 Qta+ 22" mm2+ (y., + R)fl2

z”mm =2 'ftf

82 [Z"mm =x"m cos QtA—-y"m sin ﬂt,;—Zy’mﬂ+zmQ’

The meaning of the triple subscript is as follows: For instance,
z’'¢se means the time derivative of z’s,, which derivative is left re-
ferred to the fixed system of axes. If we now transform z’’¢y by
formulas analogous to equations 80, so as to refer to the moving sys-
tem of axes, we shall get z'/¢n. These formulas are:

z' ttm=2""1es COB Rba—1Y'’¢g¢ 8iN Qta
Y ttm=2""g¢ SIN Qs+ Y’ 11e cOS Qba
2" ttm =2"" 11s

83.

Substituting from equations 83 in equation 82, we get:

Z" mmm =2 ttm— Zy'mmn + 2 0?
84. 'y”unnm=y”“m+2z,mmﬂ+ym9’+R9’

7’
z”mmm =2 ttm

The symbols with the subscripts mmm are the components of rela-
tive acceleration; those with the subscripts ffm are the components
of absolute acceleration; both being referred to the moving set of
axes, which set is that used in computing trajectories.

Equations 84 can now be simplified by dropping the negligible
terms z,2° and yn0?. Even with a gun firing 100 miles, neither of
these terms could exceed 0.00001 on any part of the trajectory.
Thus:

T re1 =$”nbs—2y'relﬂ
Y re1 =Y"'abe + 22 re1 2 + BQ?

’ ’7
2 'rel =2 'obs

85.

Now, regardless of whether we consider the earth as moving or as
motionless, what we are interested in is the motion of the projectile
relative to the earth. If we assume that the earth is motionless, all
terms involving Q in equation 85 would drop out, and weshould have:

z're1 =2 ave

-86. ,yn"‘ - y”ch

2"re1 =2 ans

If we consider the earth motionless, except for its centripetal
acceleration, the resultis to add RQ* to the right side of the second
equation of 86. Thus:

87. y"ul "’y".b. "‘Rﬂ2

Z''te1=2""abe
z"rel = z"lbn
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Equations 87 represent relative accelerations under the standard
assunptions of trajectory computation. Equations 84 represent
relative accelerations as they actually exist. Therefore the effect
of the rotation of the earth may be found by subtracting equations
87 from equations 85.

C [oz" = —2y'Q
88. oy’ = +22'0
82" =0

Let us now shift the axes until they become the axes used in tra-
j ectory computation. First rotate the system northward about the
"center of the earth through an angle of I degrees. The origin will
then coincide with the gun. Equations 88 become:

oz'' = —2Q(y’ cos I+2' sin 1)
89. 5y’ = +2Q(z’ cos 1)

82! = 4+2Q(2’ sin 1)

Let us now rotate the z and z axes clockwise around the y axis,
through an angle of (@—270) degrees. The z axis will now point
in the direction of the line of fire; 2z’ will equal zero. Equations 89
therefore become:

90. 8y’ = —2Qz’ cos Isin a

[63:"= +2Qy’ cos I sin a
82" = +2Q(y’ cos I cos a+2z’ sin I)

Now equations 90 were derived on the assumption of a rectangular
system of coordinates, whose z axis is tangent to the earth at the
gun (the ‘‘tangent method’’) instead of on the assumption of a sys-
tem whose abscissas are measured along a circle concentric with the
earth and whose ordinates are measured radially from that circle
(the ‘““‘curved method”’). 4

It now remains to be shown that equations 90 apply equally to
the curved method. For this purpose equations 90 must be derived
so as to relate to instantaneous axes respectively vertical and hori-
zontal at the point where the projectile is at that instant,® instead
of axes respectively vertical and horizontal at the gun.

In other words, any arbitrary point on the trajectory will be
taken, and equations 90 will be derived with respect to motion at
that point. Then, as that point was any point on the trajectory,
equations 90 will apply to el points on the trajectory. That point
will be called the instantaneous point.

Now revert to page 77, and consider (in place of the two sets of
axes there mentioned) two sets coincident when the projectile reaches

3 That s, the same axes as those of equations 111 in Supplement E.
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the instantaneous point. The origin is on the Equator at the same
longitude and same altitude above sea level as the instantaneous
point. Except as otherwise stated, the development is the same as
the preceding. ‘

ts is the time which has elapsed since the projectile was at the
instantaneous point. R is the distance from the center of the earth
to the instantaneous point.

Equations 80 and 84 are developed for a point on the trajectory
very near to the instantaneous point. This near point is then allowed
to approach the instantaneous point as a limit, with the result that
the terms z,Q? and ywQ? become zero and equations 84 become
equations 85.

Equations 86 and 90 evolve as before,* with no change in their
derivation, except that RQ* now represents the centripetal accelera-
tion at the instantaneous point instead of at the surface of the earth.
But as gravity is assumed to be constant, regardless of altitude
(which assumption can be shown to cause ap inappreciable error even
with the most powerful guns), BQ* can still be considered to be in-
cluded in ¢.

Equations 90 are thus seen to represent the increments of acceler-
ation due to rotation, and to be correct for either the tangent or
the curved method. In the tangent method they refer to a rec-
tangular coordinate system whose y axis is vertical at the gun. In
the curved method they refer to the directions which are horizontal
and vertical at the particular point on the trajectory.

RANGE EFFECT.

The range effect of rotation of the earth may be found by insert-
ing the values of 6z’’ and 8y’ from equations 90 into equation 54
of Chapter X, with the following result:

T
91. . AXe=22coslsina| vy —px')dis
: 0
2Q equals 0.00014584.

DEFLECTION EFFECT.

Consider now the deflection effect (D in meters) of an increment
in lateral velocity (5z’) occurring at time ¢{a. Then:

D s
-z

X—z

===z,
z

4In the curved method, equations 90 relate to instantaneous cartesian axes which are horizontal and

verticalat the instantaneous location of the projectile. To transform them, so as torelate to the curvilinear

grid of the curved method, we might use equations 120 of supplement E. But if the increments be regarded

asanalogous to inflnitesimals of the first order, the only effect of such a transformation will be to add infini-

tesimals of a higher order, containing lR’ which terms can hence be disregarded. Hence equations 90 may

be considered as remaining unchanged.

M

Whence:

)
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By differentiation, followed by integration, as in the derivation of
equation 21, we get the following expression for the deflection effect
of an increment in lateral acceleration, occurring throughout the tra-
jectory:

92. D=-f'X7”az~ dts.
0

z

Whence, substituting the value of 42’/ from equations 90:

93. Do=20 coslcosan_zy’th+2ﬂsinlr(X—z)th.
0 0

zl
For convenience, the following “rotation coefficients’’ have been
adopted:
A =0.00014584 fT (z'p—y"v) dta.
0

T
94, B=0.00014584 f (X—z) dta.
0
T —_
C'=0.00014584 j; X——z, 2 y'dt.

Note that B is not the B function of atmospheric resistance, and
that Cis not the ballistic coefficient.

Therefore the range and deflection effects of rotation of the earth
become, from equations 91 and 93:

AXg=A coslcos a.

9. { Da=B sin I+ Ccos I cos a.

A close approximation to the three rotation coefficients is the value
which would obtain in a vacuum,® namely:

A=9XT (cot o—3 tan ¢).

B=0XT.

0=§ QX T tan .
PROBLEMS.

(60) Prove that 2,9?<0.00001, as stated on page 78.
(61) Derive equations 89 from equations 88.
(62) Derive equations 90 from equations 89.

§ See ‘“ Physical Bases ”’ (Ordnance Textbook 972), p. 11.
24647—21—86
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QumsTioNs ON CrAPTER XIII.

1. What are the two effects of rotation of the earth?

2, For which of these need the range be corrected?

3. Do the formulas derived in this chapter apply to the ‘“tangent method” or to
the “curved method ™ of trajectory computation?

4, What acceleration is used in the computation of a standard trajectory?

5. What acceleration should be used to account for all the effects of rotation of the
earth?

6. Explain the ratio given under *“Deflection Effect.”

7. Explain the figure 0,00014584 in equations 94,

8. Firing in vacuo, what value of ¢ would cause the range effect of rotation”offthe
earth to be zero?



CHAPTER XIV. ’
COMPUTATION OF DIFFERENTIAL CORRECTIONS.

The computation of differential corrections is based upon t.he fol-
lowing equations, derived in Chapter IX.

W -=2hEyp+[E hy' —gy’ ( vdvG)] W +2 B’
" _f ”th
v (oL

;—-3 @ +hy'n+u")
Y, s
4 z/P Er

The method of procedure is to integrate u’/ ahead to get an approxi-
mate value of u’, integrate the approximate x’ to get an approximate
value p, and then get an approximate value of x’/ by substituting the
approximate values of  and '/ in the first above formula. Then
integrate u’’ to get u’, and u’ to get p; continuing the process of suo-
cessive approximations for any one line until the values check.
Thus we employ numerical integration and successive approxima-
tions in a manner very similar to the method of computing a standard
trajectory.

The data is taken from a trajectory computed by the methods of
Chapter VIII. The computing form is made by taking a sheet of
paper about the size of the trajectory sheet of the trajectory compu-
tations, having horizontal blue lines one-fourth inch apart. Rule a
vertical line 14 inches from the left-hand margin, then one one-half
inch from the first, then one one-half inch from that, then every
inch or three-fourths inch across the page.

Two special tables are used, being entered with 1%10 as an argument.
These tables are:

Table of f (v) =10° (h +g q%)
Table of (n—2)
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On the computing sheet, the times run across the page instead of
down it, and run from 7 to 0, instead of from 0 to T.
The first four columns are filled in as follows:

No,

Next.

Nng‘b«
decimals.

# (8pProx.)...........
# (8pProx.)..........

(2)=0.01 (pr—pe).- - -
Dens.=(2)x8.310....

10
11

13
14
15
16
17
18

19

21

22

24

26
27

30
31

32

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

--------

........

........

........

........

........

........
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Next.

Number

36
37

39

41
42

51
52

56
57

" 59

61
62

66

........

........

........

........

........

........

........

........

........

........

........

--------

........

........

........

........

........

--------

........

........

--------
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........
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........
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........
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........

........

........
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........
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The fourth column above (‘“number of decimals’”’) need not be
copied. It is given above merely to indicate the correct number of
decimals to which to carry the computations.

Put the total time of flight (7) at the head of the fourth column,
and at the head of the succeeding columns put all preceding whole
values of ¢, from T back to zero.

Fill in lines 4, 5, 6, 7, 42, 50, 26, 15, 11, and 31 with data from the
trajectory computations, and lines 60 and 9 with data from the
special tables. It is optional whether or not to fill in on the trajec-

’
tory computation sheets themselves the values of E, X —z, %, etc.

Line 8 is computed from line 7, using+ 0.0001036 as the value of
h. Line 10 is computed from lines 5 and 9. Line 12, from lines
10 and 11.

The numbers in the column labeled ‘Next’’ show which line to
proceed to, after completing the line in which the number occurs.
In the absence of any number in the ““Next’’ column, proceed to
the next line below. These numbers have no relation to the italicized
numbers in parenthesis in the left-hand column. '

The work, up to line 12, has been line by line across the page.
But from now on (until line 23 is completed in all columns), we pro-
ceed to solve each column by numerical integration and successive
approximations.

The procedure is to start with values for » and u’, obtained from
the following formulas. For time T, the following are precise:

u'’ =0,

For the next two columns the following are approximate:

"= gEy (T—t) &7

. W= 9’ T le
-
l"— 2 (T t)

W
p=pr—g (T—3).

The values of u are useful merely for a check.
Thereafter the approximate values of x and »’ (to be entered in
lines 2 and 3) may be found by integrating »’’ ahead by formula 35:

M
A ifdt=2,ft+§ Gy+ee+ds . . . )
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to get the increment of x’; and then integrating 4’ by formula 34:
¢ . 1 1 1 1
-_{dt =9 (ft—é' @y— 1_2‘ bg—‘2—4‘ 6¢—4—0 dg)

to get the increment of u. u is positive throughout; u’ is negatlve
throughout.

Although we are integrating from time 7' toward time zero, the
student should proceed exactly as in the method laid down in Chap-
ter VIII. Wherever it is necessary to change signs in integrating,

T
that fact is indicated by a minus before the | in the left-hand column

in lines 19 and 22. The first, second, etc., dlﬁerences will be formed,
proceeding from T toward zero'; but the time interval (i) will be
treated as positive. For a mat.hematica.l explanation of all this, see
supplement B.

Note that the time interval between the first and second column
is different from the uniform time interval of succeeding columns.
The first difference obtained by differencing the first and second
columns is used only in integrating for values for the second column.
There should be no second difference in the third column, no third
difference in the fourth column, ete.

The procedure, therefore, is as follows: Insert the precise values
for time T'in lines 2, 3, 19, and 22 of the T column. To get the first
precise value of u, it will be necessary to use straight multipli-
cation and division, preferably on a calculating machine, as
logarithms will not give results precise to enough places. Insert the
approximate values in lines 2 and 3 of the next two time columns.
Use these values in lines 13 and 14, and thus get three values of u’/
in line 16. Form the first differences of u’’, and integrate for the
increment of u’, using formula 34 above. Similarly integrate for
the increment of u. The values thus obtained will usually check
80 closely with the approximate values, that u’’ will not have to
be recalculated.

Start each succeeding column by integrating u’’ ahead to get
the approximate increment of u’. Add this algebraically to the last
precise value of u’, to get the new approximate p’. Integrate this
approximate u’ to get the approximate u. Use these values in lines
13, 14, and 16, and proceed as before.

After completing the fourth or fifth column of computations, it may
be well, though not essential, to extrapolate back for values of n’’, u’,
and their first, second, third, etc., differences for & time equal to the
next whole number larger than 7, i. e., one whole second larger than
the time recorded at the head of the second column of computations.

1 That is, a, equals f—f;. See the footnote on p. 30.
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Starting from this point we can now perform our integrations, with
a constant time interval and a full set of a, d, ¢, etc., for use in the
integration. This results in smoothing out the initial steps and in
giving them a greater precision.

When ' and 1 have been computed clear across the page, we are in
a position to compute the differential corrections. All of the following
work is done a line at a time clear across the page.

First comes the effect of an increase of 100 gm in the weight of a
cubic meter of air (using lines 24 and 25); from formula 66:

AXg=0.0831 (ur— pe).

The value for time zero is the range-table value, the other values being
used as a basis for weighting-factor curves, as will be expla.med later
(see Chap. XV).

Then comes (in lines 26-34) the computation of the auxiliary
variables p and »

Then come (in lines 35—49) the three rotation coefficients, formula 94 :

A=0.00014584 f T @ p—y'v) dia
B =0.00014584 f T (X —1z) dts
C'=0.00014584 f (‘L‘l y' dts

which enter into the formulas for the range and deflection effects of
the rotation of the earth. A, B, and C are respectively obtained by
multiplying by 1.4584 the values, for time zero, in lines 40, 44, and 48.

Then come (in lines 50-59) the effect on deflection of a cross wind,
and the effect on range of a range wind or a vertical wind, 1 m/s
being taken as the unit wind; formulas 78, 69, and 71:

T to_[X—-z]

AXu = T—to— Vto

AX"= —pto-l-hfp.th
to

The value for time zero is the range-table value, the other values
‘beng used as a basis for weighting-factor curves, as will be explamed
later. (See Chap.XYV).

. Then comes (lines 60-66) the range effect of the change in elasticity
due to a 1 per cent increase in temperature; formula 64:

T
AX ,=—0.005 f (n—2) w'dia
to
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The value for time zero is the range-table value, the other values
being used as a basis for weighting-factor curves, as will be explained
later. (See Chap. XV.)

This eompletes the calculations of the columns. We now proceed
to certain formulas which are based merely upon -initial or terminal
data; formulas 53, 52 and 57:

v ' .
AX¢=m[p COS ¢—v SIn ¢]t.—0
AX,=[v cos ¢+p 8in ¢] tmo
AX,=0.1 (ug—pr)

These are, respectively, the effects of a 1-mil increase iv ¢, a 1 m/s
increase in V, and a 10 per cent increase in C.
They can be checked by the following (see problems 54 and 53):

,
[p cos ¢—v sin ¢] ""’E[cﬁ—k“ ;;.1; ¢

__[# cose
AXy= [ Ex’ ]‘0-0

’
1’;.—3, for time zero being taken from line 33.

to=0

The computation sheet is completed by the following summary of
effects:
- 1m/s changein V.
1 mil change in ¢.
- Rear wind, 1 m/s.
Vertical wind, 1 m/s.
Cross wind, 1 m/s.
100 gm/m?® increase in density.
10 per cent increase in C.
1 per cent increase in absolute temperature.
Rotation 4.
Rotation B.

Rotation C.
PROBLEM.

(63) Compute the differential corrections complete from the fol-
lowing data: V=579.1 m/s; C=2.3; ¢ =5°; T=8.824 sec.
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F 576.9 520. 2 473.0 433.7 401. 2
Y e 50.5 36.2 23.5 12.2 1.8
E.eae.... 0.1075 0.0994|  0.0910 0. 0823 0.0732
»3
100 3354 2719 2242 1882 1609
Levereececacnaanan 0 548 1044 1496 1913
¢ 5 6 7 8 8.824
S 374.7 358.3 336.2 322.4 312.9
Y e, -7.8 —16.9 —-25.7 —-34.2 —41.1
E.eaa., 0. 0636 0. 0540 0. 0453 0. 0388 0. 0344
3 .
106° et 1404 1251 1137 1051 996.1
Loaeeninnncnannns 2301 2664 3009 3338 .8599

QuEesTIONS ON CHAPTER XIV.

1. Why are the times, tabulated in the first row of the computing form, designated
by ¢, instead of ta or t? Why by ¢t in problem 63?

2. Why the minus sign in the terminal value of 4? Compare equations 46 of Chap-
ter IX.

3. Why is no first difference formed between the first two columns of computa-
tions?

4. How is the first part of the computation smoothed out?

5. The values from what columns are the range-table valuea?

6. For what are the values from the other columns used?

7. What difference in methods or algebraic signs, from those of Chapter VIII, is
used to compensate for the fact that in the present chapter we are integrating from T
to earlier times?

8. Suppose a tabular function for times 4 seconds, 3 seconds, and 2 seconds, i. e , ~
Jo Sy, and f;. What is the value of a;,? What would this have been in the notation of
Chapter VIII?



CHAPTER XV.
WEIGHTING FACTORS.

In considering how weighting factors are derived from the compu-
tations described in the preceding chapter, let us take as an example
the weighting factors for range wind.

The computation sheet furnishes, among other data, the effect of a
1 m/s wind on the range. This is entered in the range table, so that
a battery commander, by multiplying this by the number of meters
per second in the range component of the wind, can calculate the
wind correction to apply to his map range.

But this step by the battery commander is based on the assump-
tion of a uniform wind at all altitudes, which is a condition that sel-
dom, if ever, exists. The wind constantly changes both its velocity
and direction from one altitude to another. Velocity usually in-
creases with altitude. Accordingly, some means must be devised for
calculating the velocity and azimuth of a purely fictitious uniform
. wind which would have an effect on range equal to the combined
effect of all the actual winds met by the projectile in its flight. This
fictitious wind is used by the battery commander just as though it
were the actual wind. It is called the “ballistic wind.” The Brit--
ish call it the ““equivalent uniform wind,” which is a very apt name.

In the field, the meteorological service measures the average direc-
tion and velocity of the actual wind for successive strata of 250
meters each.

Our problem is now to determine, for any glven trajectory, what
weight is to be given to the wind of each stratum in making up the
ballistic wind. This is done by determining what proportional part
each stratum plays in making up the total correction for a 1 m/s wind
on the computation sheet of the preceding chapter. The procedure
is as follows:

From the trajectory sheet of the original tra.]ectory computations,
find the time corresponding to ¥’ =0, and the maximum ordinate (i. e.,
the value of y corresponding to thjs time,) by methods analogous to
those used in getting the terminal values:*

’

by GEDED

At(At+l) b+At(At+l)(At+2) ot
3!

At= 23
97. 2!

Y=Y +Ala+

1 The Technical Staff practice is to use the method for slide rule given in footnote, Chapter VIII, for
finding terminal conditions, adapting it to the present conditions.
91

/
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taking the values of ¥’ and its a, b, ¢, etc., and of y and its a, b, ¢, efc.,

from the line whose %’ is nearest to zero. In the first equation, use

the a, b, ¢, etc., of ¥’ and solve by successive approximations, taking
Y

for a first approximation A= —a—y—- In the second equation, use

the a, b, ¢, etc., of y. The result is y,, the maximum ordinate.
L4 I.OI— - I

s 4 IS

iy
-

5 ABC135AS REPRESEN
| .

) 2 3 4 s . T ® ’ s
FIG 12
Against ¢ tabulate y from the trajectory sheet and T'—¢,—»,, from
line 53 of the differential computation sheet, and ca.lculabeii.and

m, as follows:
T—v»,

t T 2 1 0
y 0 0

T—ty—w, 0 T—t,
Y 0 0
Ys

T—t,~»,

T—v», 0 1

This tabulation gives for each value of #,: The altitude of the pro-
jectile; the range effect of a 1 m/s wind blowing from time ¢, to time
T; the ratio of the altitude to the maximum ordinate; and the ratio
of the aforementioned wind effect to that of a 1 m/s wind blowing
throughout the entire flight of the projectile.
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T —ty—v
Now plot, on a small sheet of coordinate paper, —T—o—ﬁ’ against

;i, and connect the points by a smooth curve. (See fig. 12.) This
curve will run from the point (1, 0), representing time zero, to the

origin representing time T and will be tangent at its summit to the
hne =

Let AB be drawn parallel to the axis of abscissas, a distance of any
Y above it. Then EB represents the proportional effect of a 1 m/s

wind blowing from the time the projectile first reaches altitude y,
until the point of fall. EA represents the proportional effect of a 1 m/s
wind blowing from the time ,,
the projectile reaches altitude
4y in its descent until the point
of fall. Therefore AB repre-
sents the proportional effect
of a 1 m/s wind blowing above
the altitude y. i
On a second sheet of coordi- s
nate paper, plot AB (meas- "‘F
3
2

N Mmoo

ured to the left from the line
of unit abscissas) against g .

{Seefig.13.) Then FBequals 'F
1—-AB, equals the propor-
tional effect of a 1 m/s wind o
blowing below altitude y. :
The proportional effect of FIG 13
a wind blowing throughout any stratum is the difference between
the FB corresponding to the top y of the stratum, and the FB cor-
responding to the bottom y of the stratum.
Thus, to get the weighting factors for the trajectory in question,

mark off on the curve like that of figure 13, points whose g are respec-

tively 9 250, @ 750, etc. The differencein abscissas between the

Ys Ys Ys Ys
first and second points is the weighting factor for the first stratum;

the difference in abscissas between the second and third points is the
weighting factor for the second stratum, etc. As a check, the sum
of all the weighting factors should be unity.

Of course, it would be possible to calculate the weighting factors
directly from the curve like that of figure 12, but it is more convenient
to have the weighting-factor curves in the form of figure 13, as it is
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usual to plot on the same sheet the curves for various angles of
departure of the same gun.’

It should be noted that, for any given trajectory, the weighting
factors for making up a ballistic wind to use for range corrections are
quite different from the weighting factors for making up a ballistic
wind to use in deflection corrections. Therefore, according to present
methods, there are for each combination of C, V, and ¢, two ballistic
winds: (@) The range ballistic wind, whose range component is used
as a basis for range corrections; and (b) the cross ballistic wind,

whose lateral component is used as a basis for deflection corrections.

The foregoing method for getting weighting factors for range bal-
listic wind is equally applicable to cross ballistic wind and ballistic
density, the last requiring slight modifications of & fairly obvious
sort in referring changes aloft to equivalent changes at the ground.
The treatment of ballistic elasticity has not yet been decided upon.

For each combination of € and V, a chart can be made up showing
(for instance) the weighting factor curves for range ballistic wind for
four or five values of ¢. The curves for other values of ¢ can be inter-
polated, if only we have a curve for ¢ =0. But of course no trajectory
can be computed for ¢=0. Nevertheless, there has been deduced
the equation of the limiting curve *which the range wind weighting-
factor curve a.pproaches as ¢ approaches zero. The equation is:

in which p is the abscissa a.nd k the ordmate of any point on the
curve; and n is the Gévre n, to be obtained from the table of (n— 2),
entered with II(;O

The equation of the limiting curve for density weighting factors is:

, using the standard muzzle velocity.

3 . ,

99. 1-p=71-k)+z(1-k)%

Theequation of the limiting curve for cross wind weighting factorsis -

100. 1-p=(1-Fk)h

The limiting curve for elasticity weighting factors is the same as
that for density; but, owing to the fact that elasticity weighting
factors become infinite in certain cases, the use of such weighting
factors is not to be recommended.

It will be observed that in the case of density, elasticity, and
cross wind, the limiting curve is independent of muzzle velocity and
ballistic coefficient. In the case of range wind the limiting curve
depends on the muzzle velocity, but not on the ballistic coefficient.

The weighting-factor curves for ¢ = 0 can be plotted on the weight-
ing-factor charts with very little extra work, and will assist materially
in the interpolation of new curves among those computed.
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By comparing a large collection of weighting-factor curves at
Aberdeen, three mean wind weighting-factor curves have been
deduced, whose equations are, respectively:

1—p=1.11 1—k)%—0.11 A—k)?
101. 1—p=0.74 (1—k)%+0.26 (1—k)?
1—p=0.36 (1—k)%+0.64 (1—k)*

For any given battery, one of these curves can be chosen, which
will give a sufficiently approximate ballistic wind for,both range and
deflection corrections for actual field service.

Similarly the following single density weighting-factor curve has
beén deduced:

102. 1—p=0.48 (1—k)%+0.52 (1—k)"

Prior to the World War a single curve, known as the ‘ time curve”’
or “vacuum curve’’ was used for all weighting-factor purposes.
These names are due to the fact that this curve weights the various
strata of atmosphere in proportion to the time the projectile would
spend in each, if the trajectory occurred in vacuo. Its equation was
the same as that of the limiting curve for cross wind (equation 100).

The present indications are that the second equation under 101
will be adopted by both branches of artillery? for all wind weighting-
factor purposes; and equation 102 for all density-weighting factor

purposes.
PROBLEMS.

(64) The maximum ordinate of problem 63 was ¥,=97.9. Con- .
struct the range-wind and the cross-wind weighting factor curves on
the same sheet of cross-section paper.

(85) Plot equations 102 and 100 on a single sheet for comparison
of the old and the modern mean density weighting-factor curves.

(66) Plot equations 101 and 100 on a single sheet for comparison
of the old and the modern mean wind weighting-factor curves.

QuesTtioNs ON CHAPTER XV.

1. Define “ballistic wind.”

2. What is the British term for ‘‘ballistic wind?”

3. What are ‘‘weighting factors?”

4. Explain the two ballistic winds used in present-day methods? Are these the
components of a single ballistic wind?

5. As no trajectory can be computed for ¢ = 0, how are the weighting factors
obtained for this angle of departure?

6. Of what use are the curves for ¢ = 0?

7. Are weighting factor curves used to determine ballistic elasticity?

8. Define “ballistic density.”

9. What is meant by the ‘“time curve”?

3 As a result of experiments at Fort Monroe, the Coast Artillery has adopted the second of equations
101 for all wind purposes.



CHAPTER XVIL
CONSTRUCTION OF A RANGE TABLE.

A range firing consists of a number of rounds, usually 10 to 20,
fired at each of several elevations, say, at 5°, 15°, 25°, 35°, and 45°,
The exact location of each point of splash is plotted by means of
intersecting azimuths from at least four observation towers.

Throughout the firing the meteorological conditions are observed
from time to time by aeroplane, pilot balloon, etc. At the gun a
detailed record is kept of the time of firing, quadrant elevation, and
ot all variations from standard, such as weight ot projectile, cant of
trunnions, etc. Time of flight is taken by stop watch as a check on
the computations later to be made and as a basis for the rough deter-
mination of maximum ordinate (y,=4.05 T3).

Separate rounds are usually fired through jump and chronograph
screens, as a basis for determining jump and muzzle velocity.

Given the range-firing records for a specified gun and projectile,
with prescribed values of weight of projectile and muzzle velocity,
to construct a range table for this gun and projectile, the procedure
is as-follows:

Divide the total rounds fired into groups, each havmg identical
ranges (except tor slight differences due to dispersion) because of
having been fired at the same elevation and on the same day.

Compute, for each group, the mean values of all measured quanti-
ties. These measured quantities are muzzle velocity, weight of
projectile, observed range, deflection, right wheel above left, time of
flight, ete.

With average values of the atmospheric conditions, and with
weighting factors from a similar range table, compute a tentative
ballistic range wind, cross wind, temperature, and density. If no
similar range table is available, use the mean welghtmg-fa.ctor curves
of Chapter XV.

Compute, for each group, the angle of departure, by correcting the
quadrant elevation for any individual error in the quadrant, for any
inclination between quadrant seat and axis of the bore (determined
by applying a clinometer to the gun) for jump and for height of site.
(See Chap. XI.)

Unless velocities were taken on the range rounds themselves, esti-
mate the mean muzzle velocity of each range group, as follows: Let
dp be obtained by substracting from the mean projectile weight of
the group in question, the mean projectile weight of the velocity

96



XVI. CONSTRUCTION OF A RANGE TABLE. 97

rounds fired on the same day. Then the estimated velocity of the
range group will be the algebraic sum of 6V and the mean velocity of
these velocity rounds, 3 V being obtained from the equation:

See the explanation preceding formula 58.

Estimate the ballistic coefficient for each group. This may be
done in a number of ways. The observed ranges should first be
roughly corrected for nonstandard conditions, using & similar range
table, or the Ingalls tables, or Alger’s charts (which are a graphic
representation of the Ingalls correction formulas), or French charts,
or the A. L. V. F. tables, or the Gvre tables of September 15, 1917.
The last-named two are French tables. An Americanization of the
A. L. V. F. tables has been published by the Ordnance Department
(War Department, Document No. 983, Confidential), and an Ameri-
canization of the Géivre tables by the Coast Artillery Board (mimeo-
granhed—title: ‘“Artillery Ballistic Tables ).

Then with ¢, V, and the corrected X as arguments, enter ‘‘ Ingalls’
Ballistic Tables” (printed by War Department, 1918), or a set ot
French charts, or a set of Alger’s charts (Journal of the U, S. Artil-
lery, Dec. 1919, p. 585), and take out C. It should be noted that
the C obtained by either of these methods is not the C desired. The
C of the Ingalls tables and the Alger charts is the Siacci C, so-called:

Wa
103. Ci= i
The C of trajectory computations in modern ballistic methods is the
normal O, so-called:

104. Cv=72 |
The coefficient of form, (i) of the two (’s is also slightly dif-
ferent. But a tentative value for Oy can be obtained by extracting
B andf,! from C,. The use of French tables or charts is, however,

much better.?
B=+sec ¢
log, fl)= —0.00012 7.
1 -}—.iathameanvnlnoo( H for the trajectery. This is assumed to be the sameas the Hat an altitude

two-thirds the maximum ordinate. The Ingalls formula for maximum ordinate in terms of time of
flight is y,=4.05 T3. ‘Therefore:

tog10( 7 ) =logieH=—0.000045 (%) =~0.00003 y=—0.0001215 72,
2464721 {4
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‘98 COURSE IN EXTERIOR BALLISTICS,

The French C and the normal C are bound together by the follow-
ing approximate relation:

0g,0Cr +1og,,Ox=7.0570— 10

106.
Or . Cx=0.001140.

The Americanized French tables give Cy direct, instead of Ck.

Plot the approximate values of C thus found against ¢, and draw a
smooth curve. For each value of ¢ at which firings were made, take
the smoothed-out value
of C and the standard V
and compute a trajectory
by the methodslaid down
in Chapter VIII.

Compute the differen-
tial corrections by the
methods of Chapter XIV
for each of the computed
trajectories.

The variations from
standard for which the
differential  corrections
are to be computed are as
follows:

N 1 m/s change in
©  ANGLE OF ELevATION W DEGREES muzzle velocity.
1 per cent change
FIG. 14 in atmospheric
density.
1 per cent change in absolute temperature (as affecting elas-
ticity).

1 m/s range wind.

1 mil change in elevation.

1 per cent change in weight of projectile.’

1 m/s cross wind.

From these results, compute the changes in range for the variation
of actual conditions from standard (atmosphere, muzzle velocity,
weight of prejectile, and elevation) at the time of firing, and correct
the observed ranges to standard ranges (i. e., to the ranges which
the given ¢ and V, and the estimated C would have produced under
standard conditions).

3 Only the first term of formula 58 should be used in getting the standard range from the observed range.

In getting the estimated velocity of the range rounds from the observed velocity rounds, use i‘l,’-n % as

before. (Seethe explanation which precedes formula 58.)
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Compare these corrected ranges with the ranges obtained from the
trajectory computations. If the differences are considerable, say,
greater than 5 per cent, correct the values of the ballistic coefficients
at which the trajectories were computed and recompute the trajec-
tories and the differential corrections for the new values of . Then
repeat the work indicated in the preceding paragraph.

. The range-elevation curve should now be constructed. Correct
each quadrant elevation (i. e., observed elevation) by adding the
angle of site and the corrections for the quadrant and quadrant seat.
We do not here correct for jump, as what is here wanted is the angle
of elevation rather than the angle of departure. Plot the corrected
ranges against the corr&epondmg elevations as thus obtained. (See

ﬁgl4)

L]

T3 2 J19NY

1

FIG. IS

Certain elements of the trajectory and certain differential correc-
tions should now be plotted against the angle of elevation correspond-
ing to the angle of departure from which they were computed. (See
fig. 15.) On one sheet of cross-section paper should be plotted—

Slope of fall.

Angle of fall (w).

Time of flight (7).
Terminal velocity (vr).
Maximum ordinate (ys).

8 Both the tompatel and the observei times of flight are plotted. The curve is then drawn, giving by
far the greater weight to the computed values, but giving some weight to the observed.
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On one sheet should be plotted (See Fig. 16) the range changes due to—
1 m/s increase in muzzle velocity.
1 per cent decrease in atmospheric density.
1 per cent increase in absolute temperature (only as aﬁectmg
elasticity). :
1 m/s following wmd

5 0 5 20 25 0 35 40 45
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1 mil increase in elevation.
1 per cent increase in weight of projectile.*

On one sheet should be plotted (see fig. 17) the deflection effect,
in mils, of—

1 m/s cross wind. :
Drift (including lateral jump).

Compute the probable error for range and deflection. This is
obtained by multiplying the mean deviation by 0.845. Usually 20 or
more rounds are fired at each of several elevations for the determina-
tion of dispersion alone. The dispersion of the range groups is also
considered if these contain enoughrounds. Plot the 50 per cent zones
against elevations. The 50 per cent zone is twice the probable error.

|
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FIG.18

Any additional data which may be needed should be treated in the
same way. o

All ‘carves should be smoothed -out. “Practically no smoothing
should be necessary, except in the case of the drift curve and the
probable error curves.

From these curves take the necessary data for the construction.
‘of the range table.

Typical curves are shown in ﬁgures 14 to 18 inclusive, which are"
based on the computation of a range’table for the 75 mm gun, firing
a Mark IV projectile at 1,900 f/s.

4 The whole of formula 58 should be used here.
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PROBLEM.

(67) Construct the necessary curves from the following data:

155 mm G. P. F. gun firing 94.7-pound shell at 2,410 f[s velocity.

Date.
June?. June9. June9. Junel0. | Juneld. .

Number of rounds considered. .. .. 25 13 12 20 20
Clinometer elevation. ............. 6° 4| 16°35 | 16° 35 | 25°5 | 35° 5
Range (meters)................... 6,477 i 11,288 | 11,453 | 14,142 16, 564
Deflection (mils).................. 5.9 10.7 8.1 6.3 7.4
Time of flight (seconds.).......... 13.23 ‘ 29.85 30.06 41.89 55.0
Waeight of projectile (pounds). . ... 93.48 ' 93.67| 93.53| 93.52| 98.37
Mean deviation in range (meters). . 44 54 61 107 9.
Mean deviation in deflection (mils) 0.5 0.5 0.6 0.7 0.6
Ballistic range wind (m/s).........| +2.3| +3.4| +3.7| —5.4 -8.8
Ballistic cross wind (m/s)......... +1.8 +2.5 +0.6 -2.9 —9.0"
Ballistic density. .................. 0.978 | 0.982 0. 981 0.972 0.965
Ballistic temperature (°F)......... o700 70° 70° 65°| - T1°
Right wheel gbove left (meters). ..|—0.0033 {—0.0027 |—0.0027 (—0.0003 | —0. 0027,
Distance between wheels (meters).| 0.503 | 0.503 | 0.503| 0.503{ 0.503:
Angle of bore sight. .............. 6° 4 | 16° 35 | 16° 35 | 25° 5 | 35° B/
Height of trunnions above mean S

low water (meters). ............ 5.94 5.94 5.94| 5.94| . 594
Height of tide (meters)........ ©...| 0.34| o040 0.0 o0.61| :0.43
Vertical jump (minutes) . . ....... -2.0{ -20| -20| -20| -0
Weight of projectile for velocity

rounds (pounds). . ............. 93.33 93.33 93.33 93.35 95.64
Velocity of velocity rounds (f/s)....] 2,391 2,391 2,391 2,401 2,410

ansﬁoné oN CHAprTER XVI.

1. Give a very general outline of the steps in the construction of a range table.-
2. How may the ballistic coefficient be estimated?

3. Why do you suppose y, equals 4.05 T2, instead of 4.02 T3?

4. In constructing the range—elevat.\on curve, why is not the observed elevation

corrected for jump?

5. To convert the observed range to the standard range, should the results of solvmg
the formulas of Chapter X be added or subtracted? Why?
6. What curves are likely to need smoothing out, and why?



: SuPPLEMENT A.
TRAJECTORY COMPUTATION BY THE TANGENT RECIPROCAL METHOD.

The tangent reciprocal method of computing trajectories is a
variant of the rectangular method described in Chapter VIII. It
is based on the following equations, involving three auxiliary vari-
ables o, o/, and ¢’’:

v _ _y'e . .
g g (@i e., tan 6 divided by g)

107. +_ _ 1 (i. e., minus the reciprocal of the horizontal com-
’ z’ ponent of velocity)
U" = EU,

These three variables are “critically varying”, i. e., they change
at such rates that inaccuracies produce the least possible effect on
the results. This enables the use of longer tire intervals with the
tangent reciprocal method than with the original rectangular method.

For the tangent reciprocal method, change the trajectory sheet as
follows: Use the — Ez’ column for y. Use the velocity, mean height,
and time columns, and the first half of the f y dt column for y’.
Use the last half of this column for time. Use the y column for o,
the ¥’ column for ¢/, and the — Ey’ —g column for o’’.

On the small computing sheet, label the rows as follows (the
numerals show the order in which the rows are used):

’

o=

¢ 0 1 2 Order.
108G e 8
(179 S 9
colog C.nvnnemnieniineaaannn. Constant.
IogE...c.cciiiiiiiiinannnnn 10
|1 3 U 1
117 R n
[0} 117 2 N 2
| 117 " | Constant.
108 el 3
oY e 4
D 1 [ 5
Y100, .. iaaann 6
VY100 ... ] 7

103.



104 COURSE IN EXTERIOR BALLISTICS.

The logarithms are all denary.
To start the computation, enter on the trajectory sheet following
initial values:

z=0
z'= Vecos ¢
y=20
y'= Vsin ¢
, 1
Ty
,=_!/__
g

Enter on the small sheet log H=0, for t=0; colog C' (constant
’3 '2
throughout); log ¢ (constant throughout). Take lx 00 and from

the table of squares; add them to get l—:’;é; and with this as an argu-

ment, get log @ from the @ Table.

Add log @, log H, and colog C to get log E. Add log E to log o’
togetlog o’’. Enter ¢’/ on the trajectory sheet. Note that initially o
is plus, and ¢’ and ¢’/ are minus. This completes the computation
for t=0.

To start a new line, integrate ¢’’ ahead to get the increment of o’.
Integrate o’ to get the increment of o.

Turn to the small sheet. Set down log¢’. From this, get colog a’.
Set down log 0. Add colog ¢’, log g and log ¢ to get log ¥’. .

Enter the table of logs and squares thh log z’ (same as colog ¢’

and logy’ as arguments and take out z’ Y, 100 and iyoo Add the last

two to get r' With this enter the @ table and take out log G.

Integrate y’ to get the increment of y; and with y as an a.rgument,
get log H from the formula

log H=(10 -0.000045y) —10.

Add log @, log H and colog C, to get log E. Add log E and log o’
to get log o’’.

Integrate o’/ to get the increment of ¢/, and ¢’ to get the increment
of ¢. If these new values check sufficiently close, the work on that
line is completed.

Proceed in the same way with each successive line.



SupPLEMENT B.

EXPLANATION OF THE SIGNS IN THE COMPUTATION OF DIFFERENTIAL
CORRECTIONS.

Whatever may be their physical significance, all of the integrations
of Chapter XIV are, mathematically speaking, performed from a
later ‘to an earlier time.

In integrating from a later to an earlier time, the first differences
of the integral must receive an algebraic sign opposite to that of the
integrand; in other words, a positive integrand produces an alge-
braically decreasing integral and vice versa. Thus the integral:

r () dts requires that a change of sign be made When numerically

integrating; the integral:— f () th ‘does not. But it is bad

psychology to use a notation in which plus requires a change of sign,
and minus does not; hence, although integrating backward, we shall

to
use the symb 1 | in place of the symbol f . Then, since
. te T

+f“( )th=—fT( ) dts, and
f( )dzA-+f( ) dta,

8 minus wﬂl mean to change signs, and a plus will mean not to
change. .
Chapter XIV employs two sorts of integrals. The integrations to

get u’ and u are of one sort. Since u’ is the derivative of p then,
is the indefinite integral of p’. That is—

to ?,
mo=fnth.

But the values of 4 are fixed by being known at time 7. Hence:

: te T
Ilu=‘f #dt.s'“ri'f"#dtzs':m-— \ g dia.
T °

in line 22 of the computation sheet. B

This equation means that x is the indefinite integral of u’; that its
value is known at time 7; that to find its value for an earlier time,
one integrates from T to this earlier time; and that one chsnges sign
in integrating. Similarly:

t T
“m-f' 'lth—}l 1-+f ,th [.l-r L "th

'l‘he other integrals of Chapter XIV are of a different sort, namely
definite integrals from time ¢, to time 7, representing the effects, at
105



106 OOURSE IN EXTERIOR BALLISTICS,

time T, of causes starting at time ¢{,, Thus, in line 40 of the compu-
tation sheet:

&)=+ f @) dta.

Logically we ought to integrate from each ¢, to 7, proceedmg
from right to left, as follows:

. 16.760 16 14 12 1 10
e 0 0.8/ 03] os2| oe| o073
Beceenocnnacecancncaeceaoacaaannn —0.22 —0.22 -0.10 —0.11 |.........
@)=+ ﬁ(mA ........ 0.08] 0 el

te
@)=+ _f. Mdta....... 041 038] 0 oot
.(8)-+£'°(7)th ....... 12| vre20] o8] o |
(8)-=+J:. 7)dta....... 1.80 1.77 1.39 0.57 0 |eaeo.....
(8)-+‘£'. (Mdta....... 2.47 2.4 2.08 1.24 0.67 0
Ete. Ete.| Ete.| Et.| Et.| Bte| Ete

But, if we are willing to give up logical arrangement, in order to
save labor and space, we can obtain the same results as fol]ows, inte-
grating from left to right:

to. 16.780 16 u 12 1u- ' 10
4 P 0 0.08 0.30 0.52 0.62 0.73
L 0.22 0.22 0.10 0.11
. .
(8)-+j; (M)dta. ...... 0 0.03 0.41 1.23 1.80 2.47

In either way, the plus sign in front of the integral signifies that
no change of sign is made in integrating.

The heavy black line between two columns is a convenient device
to indicate a change in time interval. .
To recapitulate, although all integrations in Chapter XIV are made
from time T to time ?,, we shall use the integral symbol + jt: T, so that a

minus sign before the integral shall serve notice that the increment of
the integral is to be given a sign opposite to the sign of the inte-
grand, and so that a plus sign shall serve notice that no such change of
signs is to be made.



SuppLEMENT C.
DIMENSIONS OF BALLISTIC SYMBOLS.

In deriving ballistic formulas, it is frequently convenient to test
them by the theory of dimensions. For this purpose we shall employ
the following three dimensions: Length (L), time (7", and mass (M).
Unity will be expressed by 1.

The following are the dimensions of the principal ballistic symbols:

Symbol. Dimensions.
2 T, N -L
TR - T, LT
E LRV 1 T I N L/T®
Gt ieieieiieieeteeeteieeiectaceaneaaans L/T
2 R M/L?
R e ettt eiiiieeicerceccsccecenscetsannsanass 1/L
G et ettt eieiieieieiitcatenaaneaeaaann M/L?
Weeeeeneeseeoeeesosoceaceascoseecsccasassssnocsscsssocansccanscns M
Beeeeeeeacaeaceeteaeetitetatett ittt tatacteacanasaasnnnasaanan 1
L O /L3
108 (h+g d;°§v ................................................ YL
Bttt ciiiiiiitiiteteeitectateteectteaneonaaaan yT
T L
B ettt eiieiiieiteiiiietieeieeeteietiaaaaaanas LT
B ettt tiieiieeteetceiteeateettenaanann L/T*
T 1 O R T
L 1 R 1
All trigonometric functions. .......coceiiiiiiiiiiiiiiiiiiieaneann 1
Allangles. .. .coeinonni i iiiiiaataactateseitencnceaanan 1
AILIOGRRAINS ... ...eoeeeeeeeeeeeneeeeeeaeeenessesaeeaannnnnes 1
All XpOneNtS....ccuvueninieecnceceaceseccacccnccsaccocnnnnanns 1

All of the foregoing dimensions are fixed by physical laws except
the dimensions of @, H, and C.
- There is a wide latitude possible in choosing the dimensions for

these three symbols, provided only that the dimensions of Qg are %.—
107
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Thus C may be treated as a dimensionless constant and H a dimen-
sionless ratio; G will then have then same dimensions as E, which
convention would have much to commend it. Or G could be
regarded as having the dimensions of its Mayevski equivalent A, v®,

ie., %':’ whence @ would have the dimensions T+:

The dimensions actually adopted for @, H, and (' were arrived
at as follows: @ was regarded as vB %} % being treated as a dimen-

sionless ratio (see equations 59 to 64 in Chap. X). H was given the
dimensions of ‘density, and C the dimensions of sectional density..
The following physical laws were thus expressed:

G=vB (;)
é

H= 1203.4

w
C=i

The usefulness of the tabulated dimensions is as follows: To test
the dimensional eorrectness of a formula, substitute for each symbol
its dimensions, disregarding algebraic signs and non-dimensional
numerical coefficients. If the dimensions of all the terms are alike,
it is dimensionally correct. Very often typographical errors and

mistakes in derivation can thus be readily detected.



SupPLEMENT D.
ANTIAIRCRAFT FIRE.

At the time of writing this book the methods of ‘computing dif-
ferential corrections for antiaircraft fire are in such an unsettled
state that it is thought best not to describe them in detail, but merely
to refer to them in a general way.

In Chapter IX we saw that the use of three auxiliary variables,
u, v, and p, and an auxiliary constant, A, enabled us to express a
change in X, T, or y, in terms of charges in z, ¥, 2/, and ¥’ occurring
at any time, the auxiliary variables being functions of the time of
the disturbance. The expressions for 8.X, 7, and 5y, in that chapter
may be generalized into.

108. 8 ( Y=Adz+hu dy+v cSz’-!-p;Cy’

‘where the parenthesis represents an effect of any given nature occurring
at any given point on the trajectory. Thus X is the effect on z at
the point of fall, 57 is the effect on ¢ at the point of fall, dy, is the
effect on y at the summit. Similarly we might use the same general
form to express any given effect at any other point on the trajectory.
‘The auxiliary variables here used are not to be confused with thespecial
«cases considered in Cha.ptens IX, etc.

In the general form given above, éz, 8y, éz’, and oy’ are arbi-
trary small increments occurring at the time of the cause (which
'we shall call 7,). v

z,y,2',y’, 2", and y’’ are functions of the trajectory and of the time
(t)-of the point on the trajectory at which their value is taken, whether
this be the time of cause (f=%,), or the time of effect (t=%,), or some
other time.

A, u, v, and p are functions of the trajectory, of the nature of the
«effect considered, of the time of cause (f»), and of the time of effect
te). .
8 ( ) occurs at time £, and is a function of the trajectory, of the
nature of the effect considered, and of sz, 8y, 82, 5y’, ta, and ..

Let us now consider some particular trajectory and some particular
«effect, such as change in z. Let us successively consider some fixed
value of #, the time of effect, so that it successively equals 0, 2, 4,
... T

Then for each value of ¢,:

109. z, =\ ox+hu by +v oz’ +p 8y’.

For each value of ¢, we can get a different set of values of \, g, »,

and p as functions of #, alone.
100
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The entire computation of Chapter XIV is in effect repeated for
each value of 7, running each computation backward from ¢,=%, to
{,=0, the result being a tabulation of differential corrections, from
which can be determined the effect on the z. coordinate of a projectile
at any point in its flight, due to a disturbance at any preceding point
or points in its flight.

The terminal values used to start each ot these computations are:

__cot [/}
K, “h
uw =0
n”-O
vy =0

=(.

110.

This is a very tedious performance. Accordingly there have been
devised several alternative methods, each involving variables aux-
iliary to the auxiliary variables, i. e., bearing much the same rela-
tion to the auxiliary variables as the auxiliary variables do to the
elements of the trajectory.

In the latest method, two sets of values for x and n’ are computed,
each based on the assumption that equation 108 holds true and that
A=0; one based on the assumption that hu is zero and x’ unity at
the gun, the other on the assumption that Au is unity and u’ zero
at the gun. These tour variables, called 4, p'y, u,, and 4’,, are func-
tions of the time of cause alone. 1ln this method the integration is
performed forward.

Variable coefficients K,, K, L, L, M,y M, N, N, and A are
also computed, these being functions of u,, u,, u’y, and p’,, and of
the time of effect. This A is a quantity, and not an operator.

Attempts are now being made to simplhfy this system, Until
this is nccomphshed it is not thought advisable to present the matter
to students in any more detail than is here given.



SvrpPLEMENT E.
DFRIVATION OF TWO EQUATIONS OF CHAPTER VII.

The precise equations of motion of a projectile in the tangent
method (equations 30) or the curved method (equations 31) have
been derived in various blue prints of the Ordnance Department.
A brief skeleton of the derivation is here given.

The equations of motion referred to an instantaneous system of
cartesian axes,! whose origin is the instantaneous position of the
projectile, and which are respectively horizontal and vertical at that
point, are:

' =-E%
‘ —y-ll =_E§I_g
lllo Q)’ =§"+y”
tan 6=2,
T

The tangent method assumes, in place of an infinite number of sets
of instantaneous axes, a single set, namely, the instantaneous set
whose origin is the gun. The only effect of this assumption is to change
the basis of the H function and the manner in which gravity enters
into the equations. Also, in any system, gravity (g) ought to be ex-
pressed in terms of the constant surface gravity (g,).

If y is the angle at the center of the earth subtended by the flight
of the projectile up to its arrival at the point XY, if p is the distance
from the center of the earth to the projectile and R the distance
from the center of the earth to the gun, and if gravity varies in-
versely as p?, then:

. g-g Ben By (12 ) (a- )

"The components of gravity are:

gi=gsinv=g (1-20+ - )(%- - )
o=g e y=g,(1-ZF - - - )(1- - )

Therefore the equations of motion are as given in equations 30 of
Chapter VII.

1 Coordinates T and § are those of the instantaneous system. Coordinates X and Y are t o-e of the
tangent method. Coordinates z and y are those of the curved method.

113.
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112 COURSE IN EXTERIOR BALLISTICS.

Also the correct basis of the H function becomes:

_R+Y x
T cos ¢ 2R*

114, p—R -R=Y +

The curved method assumes a single system of orthogonal curvi-
linear coordinates, whose z is measured from the gun along a circle
concentric with the earth, and whose y is measured vertically upward
from this circle.

The equations of motion of the instantaneous system are converted
into polar coordinates y and p as defined above, and thence into the
orthogonal curvilinear coordinates.

The first conversion is derived as follows: Consider a point P, on the
trajectory near the instantaneous point P, and denote by A ¢ the
angle at the center of the earth subtended by PP,. Then:

Z=psin Ay
115. y=pcos A y—0OP

where 0 is the center of the earth. _

Differentiate twice, with respect to time, and then let P, approach
P. Cos A ¢ will approach unity, and sin A ¢ will approach zero, and
we shall have as conversion equations:

, z'=py’

_l}"“p,

116. 1511 =2p,‘ﬁ'+‘ﬂ’”
?7”=P"-P'V2

The relation between the polar coordinates (¥, p) and the coordi-
nates (z, y) of the curved system is:

[4

x
117, | V”F
p=Y+R

Differentiating twice, with respect to time, we get as conversion
equations:

118, FeY



E. DERIVATION OF TWO EQUATIONS OF CHAPTER VII. 118

Substituting from equations 118 and 119 in equations 117:

119. 1z _z,,(1+y)+2xy

§'=y" R

Substituting from equations 119 in equations 111, correcting g for
altitude, but not for obliquity, and neglecting y in comparison with
R, we get the equations of motion as given in equations 31 of Chapter
VIIL.

24647—21——8



SurrLEMENT F.
A DERIVATION OF THEOREM 1.

An inspection of any number of formulas of ordinary differentia--
tion will show that they are homogeneous with respect to the ordi--
nary differential operator d.! Therefore, let us assume, as is indeed
the case, that there is no possible form of differentiation which
violates this principle.

Let
u=f,(X,Y,Z,...)
X=f, =92 ..
Y=f (9,2 ...
Z=f, (z,9,2 ...)

etc.
Then, by the foregoing assumption:
du =AdX+BdY + ... (a)
dX=Cdz +Ddy + ... (b)

where A, B, C, D, E, F, etc., are undetermined coefficients.
Substitution from equations b, ¢, etc., in equation a gives:

du=(AC+BE+ ... dz+(AD+BF+ .. )dy+ ... (4

In eqﬁat.ion a, u was considered as a function of X, Y, Z, etc. In
equation d, u is considered as a function of z, y, 2, etc.
Now divide equation a through by dX. Then:

du dY
J;=A+Bm+ P
du

If, in this expression, Y, Z, etc., be regarded as constant, then p

becomes o by definition of the partial derivative, and all the other
derivatives of this equation vanish. Thus A is identified as

b’uxyz RIS

oz

1 This means that, if we treat d as an algebraic quantity, instead of as an operator, each term will contain
d to the same power as any other term.
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Similarly: >u
B8 XYZ ¢ o o
oY
02X ...
00X, ..
oy
Y. ..
oz

D

E
oY
F="TT%:c.
oy

Now divide equation d through by dz, and regard y, 2, etc., as con-
stant. The equation thus becomes:

. y
ST*m AQ+BE+ - -

Substitute the identified equivalents of 4, C, B, E, etc.
Then:

M-...=Mz... OXiye... OUxvyz,.. OY o ys...
v X b’z + dY 5; +- - - Q.E.D.




SupPLEMENT G..
NEW METHODS OF TRAJECTORY COMPUTATION.

Since this book went to press, a new method of trajectory com-
putation and a new method of starting computations have been
devised by a member of the Technical Staff. Thereis room now only
for a bare outline of these methods, without going into the proof of
the formulas involved.

TRAJECTORY COMPUTATION.

The method of trajectory computation may best be described by
comparing it with that of Chapter VIII.

The first four or five lines are computed as laid down in that
chapter, or by the method hereinafter described. Thereafter, the
present method makes use: of ‘anti-differences” of %'’ and 2’/
These are written A-! and A2, Thus, if we have a tabulation of A 3
Ay, a,b, ¢, ete. (cf. p. 30), A? is the first difference of A-%;-y’ ls
the first difference of A !, and hence the second difference of A- ’, etec.

Now, since, for instance, 25 and 30, 93 and 98, 1000 and 1005,
all have the same difference, and hence either set could equally
‘well 'serve as A-! to produce y’’ =5, it becomes necessary to deter-
mine, in some manner, the initial values of A-* and A-%. By insert-
ing in formula 121 (post) the valuesof ¥’, '/, and the a, b, and ¢ of y’’
for any given line, the value of A-! for that line can easily be
ascertained. Do this for two or three successive lines; and, if neces-
sary, adjust the values of A-! thus found, so that the already tabu-
lated values of y’’ will be exactly the first differences of A-'.

Similarly get the values of A2, from formula 122 (post) for several
successive lines, adjusting as before. Similarly get values of the
At and A% of 2''.

From this point on, proceed practically as in Chapter VIII, exeept
that we obtain z’, z, ¥, and y, directly by the formulas of this sup-
plement,! instead of Az’, Az, Ay’, and Ay, as in Chapter VIIL.
Integrate ahead by formulas 33 or 35 of that chapter. For the ten-
tative value of y, to use in getting log H, we may disregard all terms
of formula 34 except:

t
120 [y at=i @~ Ja0
1

Compute the tentative values of ¥’’ and z’’ on the small sheet, as
in Chapter VIII, and enter them on the trajectory sheet. Obtain the
new A, by algebraically adding the y’’ of its line to the A-! of the
line before. Obtain the new A-?, by algebraically adding the At
of its line to the A-? of the line before. Similarly for z’’

1 A Technical Stafl asccompanying a Sample Trajectory, gives additional formulas which
further lighten the laboll"%%elntegmtion inyspgdal y '8

116
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Then, instead of getting the increment of y’ by formula 34 of
Chapter VIII, get y' itself by:

‘ ' . 1 1 1 1

121.2 y't’:"' (At'l—"" y"g‘— 1—2 ‘-2—4 b '—4-6 Cg)
&nd mstead of then integrating y’ to get the increment of .y, get y
uself du-ect from 3’ by:

122. L yy=12 (A”—.A"+ T3Y"— b‘zj:(f‘

Note that the first difference, a, does not occur in this formula;
and-that 7 is squared. The first two terms in the parentheses can be
consolidated into A%. The last term in the parentheses ca,n
usually be neglected or estimated.

..z’ can be found from formula 121 usmg 2’ and its dlﬂ'erences and
z (whenever needed) from formula 122, in each formula substltutmg'
z’s for all the y’s. .

‘No columns of differences of y y, z',orz need be camed on ﬁhe
trajectory sheet, unless desired as a check on the smoothness with
which these functions are developing. Also, at least one less column
of differences need be carried for '’ and z'’ than in Chapter VIIL..
Thus, .in place of the 25 columns of figures tabulated on the trajec-
tory gheet.in the method of that chapter, the present method ean
get along with 17 columns, as follows .

z,2', A%, A, 2", a,b,¢, 4, y, v, A’A‘,y ' a, b, e

The chief advantages of this new method are: It necessitates fewer
columns of figures; its integration formulas are more rapidly con-
vergent than those of Chapter VIII; fourth differences, which are
apt to be very erratic in practice, are not employed in this method;
any errors in mtegratmg by this method are noncumulative, except
of course as affecting 2’’ and y"’ through the small-sheet computations,
whereas in the method of Chapter VIII errors have this effect and
in addition cumulate in their own columns. All that has to be paid
for this gain is a slight artlﬁcmhty of method and the shght addltlonal
la,bor of starting the A-* and A ¥ columns :

3 Il a and ¢ are running so smoothly that a;ﬂ, c.+; and c.ﬂ. ean be estxmated,the xollowmgm be mb-
ltituted for formula 121:

ﬂ'-g[A + A -3 ¢l+a¢+l)+w (Cu- +Cc+n)]
Tlus fqrmu.la has obvious advmtnges, if the time-interval is two econds.
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STARTING THE TRAJECTORY.

The new method of starting trajectories is applicable either to the
foregoing method or to that of Chapter VIII, except on very flat
trajectories.

The values of the various elements for {=0 are computed as in
Chapter VIII. Tentative values for log Ez’ and log Ey’ for t=1 are
then extrapolated, by subtracting from the values for ¢=0 the
respective quantities DL Ez’ and DL Ey’, found by the formulas:

128 104 DL Ez'= AE+ By’
. . 104 DL Ey'=104 DL Ex'+C

If 7 is other than one second, multiply each of these by i before
subtracting. ‘
The factor 10* is included for convenience in connection with four
place logarithms. The decrements found by formulas 123 represent
the change in the fourth decimal place of the logarithm in question.
The logarithms mentioned in this chapter are all denary, although

natural logarithms were used in the derivation of the formulas.
Log A and log B are given on a one-page table (“Auxiliaries for

Starting the Trajectory’’) with the argument 11();0- Cisfrom this table,

by means of the argument y’. These symbols should not be confused
with  the three rotation coeflicients of Chapter XIII, nor with the
ballistic coefficient C.

The following is the explanation of the symbols involved:

DLEv=310g B :
A=10* Mn= M(l +'é%‘z)1o4 (800 p. 64)

- ¢gd@
B-M(h+-%7'-) 10*
- *l’ﬁ) ‘
¢ (y, 10
M=loge=0.434294 . . .

Only a rough interpolation for log A and log B is necessary. For
a ¥’ less than 100, multiply y’ by 10, enter the table with the result
and multiply by 10 the C thus obtained.

The tentative values of log Ez’ and log Ey’, resulting from the use
of the foregoing formulas, yield tentative values of z’’ and y’’, which
can be integrated in the manner of Chaf)ter VIII, to y', y, and 2',
with which to compute the column for =1 on the small sheet as in
that chapter.
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Repeating the same process upon the final figures of the column
for t=1, we obtain tentative values of ¥’, y, and z for t=2i. And so
-on, until enough figures are tabulated on the trajectory sheet to supply
-sufficient differences for integration ahead. The use of this special
method can then be discontinued, and the trajectory completed,
-either by the method of Chapter VIII or by the method discussed
at the beginning of this supplement.

This special method of starting trajectories makes possible a very
.close approximation of z’’ and y’’, and thus obviates the repeated
recomputation of the first few time intervals of the trajectory.?

3 It is claimed that this method will enable the computer to begin a trajectory with one-second intervals.
‘There is some doubt as to the validity of this claim for very high velocities or very low ballistic coeflicients.
“This method is to be used merely to yield approzimate values of 2’ and y’, on which to base the usual
-method of successive approximations. It is mathematieally equivalent to obtaining correct values for
"’ and y'’ at t=fy, and assuming that this value remains unaltered during the interval. It therefore
smaterially reduces the number of approximations necessary to get a satisfactory value of 2’ and y'.



SuprLEMENT H.
NOTE ON ADVANCING DIFFERENCE FORMULAS.

The student’s attention is directed to the fact that, in most math-
ematical books that treat of interpolation and integration, advancing
"differences are used almost exclusively, instead of the receding differ-
ences used throughout this book. . Therefore, the formulas of most
textbooks on finite differences will not be those of this book.
. The computations of ballistics that involve interpolation er inte-
gration are mostly of such a nature that the work continually lies
at or very near the last one of those values of the functions already
derived and tabulated. (In the formula for “integration ahead,”
for instance, one limit of our integral, and, in fact, the entire integra-
tion interval, lies beyond the time of our latest established and tabu-
lated value of the function.) Hence, we are continually so situated
that the only differences available to us in this region are receding
differences. We are, therefore, unable to use the advancing differ-
ence formulas usually given in textbooks.

The student who wishes to construct advancing difference for-
mulas, for use in special cases, may use either of the methods given
in this note. It is, however, advised that all such formulas be plainly
labeled to indicate that they are to be used only with advancing
differences.

Advancing differences are formed thus:

a,=1,—f, (instead of f—f_,),

a,=f,—f, (instead of f, — 1), etc.

by=a, —a, (instead of a,—a_,), etc.
That is, f,—f, is now called q, (instead of a,); f,— 2f, +£,, which, being
the old a,— e, , was called b,, has now become a, —a,=b,; etc.

It is to be noted that, whether receding or advancing differences
are used, the subtractions are always made with same direction; i. e.,
we always have f,—f;, a;—a,, etc., never f, —f, or a,—a,.

One method of obtaining any advancing difference formula from
the corresponding receding difference formula (see footnotes, pages
17 and 31) is as follows:

In the formula for receding differences, change the algebraic sign
of every odd-ordered difference, the even-ordered remaining un-
changed. Also, change the sign of every ¢ (and therefore of every
At) throughout the equation.

The last condition requires that any integral shall have the sign of
dt and also of both the limits changed. Thus the formula:

+2
+ +jl'dt= terms inf, a, b, ¢, etc. (receding),
120
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will become
-1

-3 -3
+ jl'(—dt=— fldt=+ j;dt=termsinf,a,b,c,etc.(advanci.ng);

the coefficients of f, a, b, ¢, etc., in one equation, being respectively
equal to the coefficients of £, a, b, ¢, etc., in the other equation, but in
the second equation the coefficients of a, ¢, etc. (the odd-ordered differ-
ences), are each opposite in sign to the same coefficients in the other
equation. Referring to the schedule of page 30, it is noted that if
the first equation above uses f,, @,, b,, ¢, etc., of the receding differ-
ence notation, then the second equation will use f,, a,, b,, ¢o, etc., of
the advancing difference notation, which will be respectively equal to
Jor @y, by, ¢, ete., of the receding difference notation of the schedule.

The preceding process is reversible: i. e., exactly the same changes
are to be made in transforming any formula for advancing differences
into the corresponding formula for receding differences.

A full set of advancing difference formulas can be derived ab
initio, by tabulating f;, f;, f;, etc., and the advancing differences;
and then performing the work of problems 28 to 35, and 39 and 41;
noting that the algebraic signs of all subscripts, limits, and values
of ¢ in general, in the statements of those problems, are to be changed.

The expression: *corresponding formula,” which has been used in
the preceding discussion, needs some explanation. If a formula
uises differences receding (or advancing) from f,, to interpolate for
fn, the “corresponding’”’ formula in differences advancing (or receding)
from f, will interpolate for f_n. If a formula using differences receding

n
(or advancing) from f; gives the value offfdt, the “corresponding”’
m

formula in differences advancing (or receding) from f,, will give — j_”dt.

For example, the formula in receding differences, for ‘““integration
ahead”’ from f; transforms into a formula using advancing differences
for integrating over the interval back from f,.

It should be noted that even in Chapter XIV, where the function
to be integrated is tabulated in reverse order of time, yet, since the
differences used recede with respect to the order of tabulation, only
receding differenceformulas aretobe employed. (Seefootnote,p.30.)
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