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P R E F A C E .

T his work is intended, primarily, as a text-book for 
the use of the officers under instruction at the U. S. 

Artillery School, and the arrangement of the matter has 
been made with reference to the wants of the class-room. 

The aim has been to present in one volume the various 

methods for calculating range-tables and solving impor­

tant problems relating to trajectories, which are in vogue 

at the present day, developed from the same point of 

view and with a uniform notation. The convenience of 

this is manifest.
It is hoped, also, that the practical artillerist will find 

here all that he may require either for computing range- 

tables for the guns already in use, or for determining 

in advance the ballistic efficiency of those which may 

be proposed in the future.



E R R A T A .

Page 54, line 27 : 

Page 64, line 4 :

For - read u v

For (z) and (<p) read (z')„ and (f)K.

Page 72, line 18:

For sec <p read sec 5 f. /

Page 73, line 22 :
rr G C  a S C  For — ~ readA A

Page 93, line 11 :
For g read y.

Page 116, equation (78):

For — read cos <p
C

2 cos2 f
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EXTERIOR BALLISTICS
IN THE PLANE OF FIRE.

IN TROD U CTION .

D efin ition  and O bject.— Ballistics, from the Greek 
, I  throw, is, in its most general signification, the 

science which treats of the motion of heavy bodies pro­
jected into space in any direction; but its meaning is usu­
ally restricted to the motion of projectiles of regular form 
fired from cannon or small arms. '

The motion of a projectile may be studied under three 
different aspects, giving rise to as many different branches 
of the subject, called respectively Interior Ballistics, Ex­
terior Ballistics, and Ballistics of Penetration.

1. In te rio r  B a llis tics .— Interior Ballistics treats of 
the motion of a projectile within the bore of the gun while 
it is acted upon by the highly elastic gases into which the 
powder is converted by combustion. Its object is to deter­
mine by calculation the velocity of translation and rotation 
which the combustion of a given charge of powder of 
known constituents and quality is capable of imparting to 
a projectile, and the effect upon the gun.

2. E x te rio r  B a llis tics .— Exterior Ballistics considers 
the circumstances of motion of a projectile from the time 
it emerges from the gun until it strikes the object aimed 
at. Its data are the shape, caliber, and weight of the pro­
jectile, its initial velocity both of translation and of rotation,
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the resistance it meets from the air, and the action of grav­
ity.

3. B a llis tics  o f  P e n etra tio n .— This branch of the 
subject has reference to the effect of the projectile upon 
an object; the data being the energy and inclination with 
which the projectile strikes the object, the nature of the re­
sistance it encounters, etc.

The above is not the order in which the three divisions 
of the subject are usually presented to the practical artil­
lerist, but the reverse. He desires to penetrate or destroy 
a given object—say the side of an armored ship. Ballistics 
of penetration enables him to determine the minimum en­
ergy which his projectiles must have on impact, and the 
proper striking angle, to accomplish the desired result. 
Exterior Ballistics would then carry the data from the ob­
ject to be struck to the gun, and determine the necessary 
initial velocity and angle of elevation. Lastly, Interior 
Ballistics would ascertain the proper charge and kind of 
powder to be used to give the projectile the initial velocity 
demanded.

The following pages treat only of Exterior Ballistics; 
and this subject will be limited, at present, to motion in the 
vertical plane passing through the axis of the piece.



CH A PTE R  I.

R E S I S T A N C E  O F  T H E  A I R .

P re lim in a ry  C onsiderations.— The molecular the­
ory of gases is not yet sufficiently developed to be made 
the basis for calculating the resistance which a projectile 
experiences in passing through the air. We know, how­
ever, that if a body moves in a resisting medium, fluid or 
gaseous, the particles of the fluid must be displaced to allow 
the body to pass through ; and hence momentum will be 
communicated to them, which must be abstracted from the 
moving body. From the assumed equality of momenta 
lost and gained Newton deduced the law of the square of 
the velocity to express the resistance of the air to the mo­
tion of a body moving in it.

The following, which is the ordinary demonstration, 
supposes the particles of air against which the body im­
pinges to be at rest, and takes no account of the reaction of 
the molecules upon each other, nor of their friction against 
the surface of the body. The result will therefore be but an 
approximation, which must be estimated at its true value by 
means of well-devised and accurately-executed experiments.

N orm al R esistan ce to  th e  M otion o f  a B ody 
p resen tin g  a P la n e  Surface to  tlie  M edium .— Let 
a moving body present to the particles of a fluid against 
which it impinges, and which are supposed to be at rest, a 
plane surface whose area is S, and which is normal to the 
direction of motion. Let w be the weight of the moving 
body, v its velocity at any time t, d the weight of an unit- 
volume of the fluid, and g  the acceleration of gravity. The 
plane 5  will describe in an element of time d t a path vdt, 
and displace a volume of fluid S v d t ; therefore the mass

of fluid put in motion during the element of time is -  Svdt.
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And as this moves with the velocity v, its momentum is

— S v 'd t;  and this has been abstracted from the moving

body, whose velocity has thereby been decreased by dv. 
Therefore

w d ,----dv =  — b v d t
g  g

or zv dv S _ .
— “  -n  =  - S v  

g dt g
The first member of this last equation is the momentum- 

decrement of the body, due to the pressure of the fluid 
upon the plane face S, and is therefore a measure of this 
pressure. Calling this latter P, we have

P:

or, per unit of mass,
g

’ w

w d v _§
g  dt ~  g

S  v*

p = - ds  =  i s v ‘dt w
As before stated, several circumstances have been omit­

ted in this investigation 'which, if taken into account, would 
probably increase the pressure somewhat, at least for high 
velocities. We will therefore introduce into the second 
member of the above equation an undetermined multiplier 
k{k~> i), and we have

P  =  Z:0-S v *
g  U)

The pressure is, therefore, proportional to the area of 
the plane surface, to the density of the medium, and to the 
square of the velocity.

If in equation (i) we make S = i,  the second member 
will then express the normal pressure upon an unit-surface 
moving with the velocity v ; calling thisp0,'we have

, <5 t
P> =  k ~ v

and
P  =  P*S
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Oblique Motion.— If the surface 5  is oblique to the 

direction of motion, let f be the angle which the normal to 
the plane makes with that direction ; and resolve the velo­
city v into its components v cos e, perpendicular, and v sin s, 
parallel, to S. This last, neglecting friction, having no re­
tarding effect, we have for the normal pressure upon S the 
expression

P = k — V* S  cos’ B =  P S  C0Sa s ‘
g <

Poncelet (Mecaniqite Industrielle, 403) cites the following 
empirical formula for calculating the normal pressure, viz. :

derived by Colonel Duchemin from the experiments of 
Vince, Hutton, and Thibault. As this expression satisfied 
the whole series of experiments upon which it was based 
better than any other that was proposed, we will adopt it in 
what follows.

Pressure on a Surface of 
Revolution.— Let A B B ,  Fig.
1, be the generating curve of a 
surface of revolution, which we 
will suppose moves in a resisting 
medium in the direction of its 
axis, ' 0  A. If m m'm" =  d S  be 
an element of the surface, inclined D' . 
to the direction of motion by the 
angle N m v =  e, it will suffer a 
pressure in the direction of the 
normal N  in, equal, by (2), to 

2pad S
1 -f-sec2 s 0

Resolving this pressure into two components,

2 fad S cos s , j 2 p .d S  sine ,
"'i ,+  sec, e ’ ParalleI’ and " 1 -jl' sec3 g~ PerPendlcular>

IFigil

u i D



IO E X T E R I O R  B A L L I S T I C S .

to OA, it is plain that this last will be destroyed by an 
equal and contrary pressure upon the elementary surface 
n n' n" situated in the same meridional section as m m!m", and 
making the same angle with the direction of motion. It is 
only necessary, therefore, to consider the first component,

2p0d S  cos £
1 +  sec2 £

•*- It is evident that expressions identical with this last are 
applicable to every element of the zone m m' n ri described 
by the revolution of mm! ; and we may, therefore, extend 
this so as to include the entire zone by substituting its area 
for dS. If we take O A for the axis of X, this area will be 
expressed by 2 ny ds, in which ds is an element of the gene­
rating curve; therefore, the pressure upon any elementary 
zone will be

A  "d p ;
y ds cos £
1 +  sec2 £ 1

dx1 'Substituting — dy for ds cos £, and 2 -f- —3 for 1 -}-sec2  ̂ and 

integrating between the limits x  =  l, and x  — o, we have

P =
y dy

1 +
j d̂ _
Yd/

As. all service projectiles are solids of revolution, this 
last equation may be used to calculate the relative pressures 
sustained by projectiles having differently shaped heads, sup­
posing their axes to coincide with the direction of motion at ‘ 
each instant. In applying the formula, y will be eliminated 
by means of the equation of the generating curve. The 
superior limit of integration (/) will be the length of the 
head. R  will denote the radius of the projectile.

Application to Conical Heads.— Let n R be the length 
of the conical head, the angle at the point being

2 tan-
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The equation of the generating line is

y = - - + R
whence

ydy
. dx'

' + * 7/
and, therefore,

(n R — x) dx

/>= 4 ^ .  r { T A - x )dx
» (2 + » V  '

When n =  o, the head becomes flat, and the above equa­
tion reduces to

. P = n R 'p «
as it should.

A p p lica tio n  to  a P ro la te  H em i-Splieroitlal H ead, 
w ith  A xes in  th e  R a tio  o f  one to  tw o .— The equation 
of the generating ellipse is4/ +  ** =  4 R\
whence

y dy
x% dx

l + ? d f -  

and, therefore, since 1 =  2 R,
4 (8 A2 — x3)

P — IL ii /  x*dx
2 J  » 8 A3 —

=  jr-ffaA(2 log's — I)
=  0.3863 n R* pa. 0,

A p p lica tio n  to  O gival H eads.
— Let A B D (Fig. 2) be a section of  ̂
an ogival head made by a plane pass­
ing through the axis of the projectile. 
Let A O — R  be the radius of the pro­
jectile, and A E  =  n R be the radius

_\UJ
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of the generating circle, whose equation is, if we make O the 
origin and O B  the axis of X,

y =  {n' X -  x 'Y  -  ( « -  1)R
Making jr =  o, we find

O B — l  =  R V2 n — 1 
Let the angle A E  B = y  ; therefore

V2 n — 1tan y — ----------n — 1
which serves to determine the length of the arc of the 
ogive, A B.

The differential of the equation of the generating circle 
is

, x dx• dy =
whence

(n‘ X - x 'Y

and

therefore 

P

, , , (« — i) R x  dxydr = - * J x  +

. , dx1 n* X  + x ‘
2  X

=  2wje*/,|

R zn -  1 2 (n — 1) R x ’ 2 x 3

(n'R’+x*) (»VP-x * Y  n’R’+ x ■ dx

» ( » - ! )  lQ » +  l/2 +  I 
^  1

'l‘ log n* -\-2 n — 1
}'

=  7cR*/>tF(ri),(say) (3)
If a is the angle at the point of the projectile, the expres­

sion for dy gives

a — 2 tan'

a

‘ ■ y = 2

/ V2 n — 1 
\ n — 1
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When n =  1, A D B  becomes a semi-circle and the head a 

hemisphere.
The following table gives the values of F  (n), the lengths 

of head in calibers, and the angles at the point, for integral 
values of n from 1 to 6 :

n F { n )
L E N G T H  O F  H E A D  

( 0

A N G L E  A T  P O I N T  

( « )

1 0 . 6 1 3 7 0 . 5 0 0 0 00 0
0

8 0 0
^

2 0 . 4 1 8 7 0 . 8 6 6 0 1 2 0 °  OO ' OO"

3 0 . 3 1 7 6 1 . 1 1 8 0 9 6 °  2 2 r 4 6 "

4 0 . 2 5 6 0 1 . 3 2 2 9 8 2 °  4 9 '  0 9 "

s 0 . 2 1 4 6 1 . 5 0 0 0 7 3 °  4 4 '  2 3 "

6 0 . 1 8 4 8 1 . 6 5 8 3 6 7 0 &  5 2 "

R esistan ce o f th e  A ir  to  th e  M otion o f O gival- 
heatletl P ro jectiles .— The expression

P  — K R* p0F(n)

which, by substituting for/„ its value, becomes

P = k n l ? -  F(n)i?
&

serves to determine the pressure, as deduced by the above 
theory, upon an ogival head; and requires that this pressure 
should be proportional to the density of the air, to the area 
of the cross-section of the body of the projectile, and to the 
square of the velocity. The truth of the first two of these 
deductions may be considered as fully established by expe­
riment, and is admitted by all investigators. The relation 
between the front pressure and the velocity has not been 
satisfactorily determined by experiment, and we are there­
fore unable to verify directly the law of the square deduced 
above. It seems probable, however, from experiments made 
to determine the resistance of the air to the motion of pro-
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jectiles, as well as from theory, that this law is approxi­
mately true for all velocities.

If we represent the pressure of the air upon the rear 
part of the projectile by P', and the resistance by p, we shall 
evidently have

P =  P -  P '

It is evident that P ’ will be zero whenever the velocity 
of the projectile is greater than that of air flowing into a 
vacuum. In this case, and also when P ' is so small rela­
tively to P  that it may be neglected, we have approxi­
mately

p =  P
A p p lication  to  O gival H eads stru ck  w ith  R ad ii 

o f  one and a h a lf  Calibers.— Experiments have proven 
that for practicable velocities exceeding about 1300 f. s. the 
resistance of the air is sensibly proportional to the square of 
the velocity; and a discussion of the published results of 
Professor Bashforth’s experiments has shown that, within 
the above limits, the resistance to elongated projectiles 
having ogival heads struck with radii of one and a half cali­
bers may be approximately expressed by the equation,

A „  , 
p =  — d P  

S
in which d is the diameter of the projectile in inches, g  the 
acceleration of gravity (32.19 ft.), and log A =  6,1525284 — 
10. Whence

p — 0.0*44137 da P

Making <5 =  534.22 grains, which is the weight of a cubic 
foot of air adopted by Professor Bashforth, and F{n) — F{3) 
=  0.3176, we find for the corresponding expression for P

P  =  0.0*41069 k d2 v3

A  comparison of the second members of these two equa­
tions seems to warrant the conclusion that for velocities 
greater than about 1300 f. s., the rear pressure is either zero 
or so small relatively to the front pressure that it may be
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neglected without sensible error. Equating the two mem­
bers, we find for velocities greater than 1300 f. s.

k — 1.0747

' In the following table the first and second columns give 
the velocities and corresponding resistances, in pounds, to 
an elongated projectile one inch in diameter and having an 
ogival head of one and a half calibers. They were deduced 
from Bashforth’s experiments by Professor A. G. Greenhill, 
and are taken from his paper published in the Proceedings 
of the Royal Artillery Institution, No. 2, Vol. XIII. The 
third column contains the corresponding pressures upon the 
head of the projectile computed by the formula

nb F(n)rPz 5 76;
in which the constants have the values already given. The 
fourth and fifth columns are sufficiently indicated by their 
titles.

These results are reproduced graphically in Plate I. 
A is the curve of resistance (p), drawn by taking the velo­
cities for abscissas and the corresponding resistances, in 
pounds, for ordinates. This curve is similar to that given 
by Professor Greenhill in his paper above cited. B  is the 
curve of front pressures (P), and is a parabola whose equa­
tion is given above. It will be seen that while the velocity 
decreases from 2800 f. s. to 1300 f. s., the two curves closely 
approximate to each other; the differences (P — f>) for the 
same abscissas being relatively small and alternately plus 
and minus. As the velocity still further decreases, the curve 
of resistance falls rapidly below the parabola B, showing 
that the resistance now decreases in a higher ratio than the 
square of the velocity. This continues down to about 800 
f. s., when the parabolic form of the curve is again resumed, 
but still below B. The differences P — p from v =  1300 f. s. 
to v =  100 f. s. are shown graphically by the curve C, which 
may represent, approximately, the rear pressures for decreas­
ing velocities, and possibly account, in a measure, for the
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sudden diminution of resistance in the neighborhood of the 
velocity of sound.

V p P P - p
P - p

V p p P - P
P - p

P P

2800 35-453 34-603 —0.850 1080 3-9995.148 + 1.149 0.223
2750 33-58633-378 —0.208 1070 3-756 5-053 1.297 0.256
2700 31.84632.176 + 0.330 1060 3-4784-959 1.481 0.298
2650 30.241 30.995 + 0.754 1050 3-1.394.866 1.727 0.3552600 28.613 29.836 + 1.223 1040 2.8234-774 I-95I 0.40g
2550 27-24328.700 + I-457 1030 2.6044.684 2.0800.444
2500 26.406 27-585 + J-379 1020 2.4824-592 2.II40.4592450 25.898 26.493 + 0-595, 1010 2.404 4.502 2.0980.466
2400 25.588 25.422 —0.166 1000 2.3304.414 2.0840.472
2350 25.242 24-374 - 0.S68 990 2.261 4.326 2.065 0-4772300 24.76023-347 -I-4I3 980 2.193 4-239 2.0460:483
2250 23.56622.344 — 1.222 970 2.127 4-153 2.026 0.488
2200 22.158 21.362 —0.796 960 2.061 4.068 2.0070-4932150 20.811 20.402 —O.409 950 1.998 3-983 1.985 0.498
2100 19.504 19.464 —0.040 940 1-9353.900 1.965 0.504
2050 18.229 18.548 +0.319 930 1-8743-817 1-9430.509
2000 17.096 17-654 +0.558 920 1.814 3-736 1.922 0.5151950 16.127 16.783 +0.656 910 1-7563-655 1.8990.520
I9OO 15-364 15-934 +0.570 900 1.699 3-575 1.8760.525T850 14.696 15.106 +0.410 850 I-43I 3.189 1.7580-5511800 14.002 14-300+ 0.298 800 1.212 2.825 1.613 0.580

1750 I3-3I8I3-5I7+0.199 750 1-043 2.483 1.4400.580
1700 12.666 12.766 +0.100 700 0.905 2.163 1.258 0.581
1650 12.030 12.016 —O.OI4 650 0.784 1.865 1.081 0.580
1600 11.416 11.298 —0.018 600 0.674 1.589 0.915 0.576
1550 10.829 10.604 —0.225 550 0.572 1-335 0.763 0.572
1500 10.263 9-930- 0.333 500 0-473 1.103 0.630o.57i
1450 9.622 9.280 - 0.342 450 0.381 0.894 0.513 0-57.41400 8.924 8.651 - 0.273 400 0.2 Q40.706 0.412 0.5831350 8.185 8.044 —O.I4I 350 0.221 0.541 0.3200.5921300 7.413 7-459 +0.0460.006 300 0.162 0-397 0.235 0.592
1250 6.637 6.896 0.2590.038 250 0.112 0.276 0.164 0.595
1200 5.884 6.356 0.4720.070 200 0.0720.177 0.105 0-591
1150 5-179 5.837 O.6580.113 150 0.040O.O99 0.0590-594IIOO 4.420 5-340 O.920 O. I72 IOO 0.018 0.044 + 0.0260.591IO9O 4.221 5.244 + i.023jo.ig5
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E X P E R I M E N T A L  R E S I S T A N C E .

N otable E xp erim en ts.— Benjamin Robins was the 
first to execute a systematic and intelligent series of experi­
ments to determine the velocity of projectiles and the effect 
of the resistance of the air, not only in retarding but in de­
flecting them from the plane of fire. He was the inventor 
of the ballistic pendulum, an instrument for measuring the 
momenta of projectiles and thence their velocities. He also 
invented the Whirling Machine for determining the resistance 
of air to bodies of different forms moving with low velo­
cities. His “ New Principles of Gunnery,” containing the 
results of his labors, was published in 1742, and immediately 
attracted the attention of the great Euler, who translated it 
into French.

The next series of experiments of any value were made 
toward the close of the last century by Dr. Hutton, of the 
Royal Military Academy, Woolwich. He improved the 
apparatus invented by Robins, and used heavier projectiles 
with higher velocities. His experiments showed that the 
resistance is approximately proportional to the square of 
the diameter of the projectile, and that it increases more 
rapidly than the square of the velocity up to about 1440 f. s., 
and nearly as the square of the velocity from 1440 f. s. to 
1968 f. s.

In 1839 and i 84° experiments were conducted at Metz, 
on a hitherto unprecedented scale, by a commission ap­
pointed by the French Minister of War, consisting of MM. 
Piobert, Morin, and Didion. They fired spherical projec­
tiles weighing from 11 to 50 pounds, with diameters varying 
from 4 to 8.7 inches, into a ballistic pendulum, at distances 

' of 15, 40, 65, 90, and 115 metres; by this means velocities
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were determined at points 25, 50, 75, and 100 metres apart, 
the velocities varying from 200 to 600 metres per second.

From these experiments General Didion deduced a law 
of resistance expressed by a binomial, one term of which is 
proportional to the square, and the other to the cube, of the 
velocity. This gave good results for short ranges; but with 
heavy charges and high angles of projection the calculated 
ranges were much greater than the observed.

Another series of experiments was made at Metz, in the 
years 1856, 1857, and 1858, by means of the electro-ballistic 
pendulum invented by Captain Navez, of the Belgian Artil­
lery. This, unlike the ballistic pendulum, affords the means 
of measuring the velocity of the same projectile at two 
points of its trajectory. The results of these elaborate ex­
periments may be briefly stated as follows: The resistance 
for a velocity of 320 m. s. does not differ sensibly from that 
deduced from the previous experiments at Metz; but the 
resistances decrease with the velocity below 320 m. s., and 
increase with the velocity above 320 m. s., more rapidly than 
resulted from the former experiments. The commission 
having charge of these experiments, whose president was 
Colonel Virlet, expressed the resistance of the air by a 
single term proportional to the cube of the velocity for all 
velocities.

In 1865 the Rev. Francis Bashforth, M.A., who had then 
been recently appointed Professor of Applied Mathematics 
to the advanced class of artillery officers at Woolwich, 
began a series of experiments for determining the resistance 
of the air to the motion of both spherical and oblong projec­
tiles, which he continued from time to time until 1880. As 
the instruments then in use for measuring velocities were 
incapable of giving the times occupied by a shot in passing 
over a series of successive equal spaces, he began his labors 
by inventing and constructing a chronograph to accomplish 
this object, which was tried late in 1865 in Woolwich 
Marshes, with ten screens, and with perfect success. It was 
afterwards removed to Shoeburyness, where most of his
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subsequent experiments were made. He employed rifled 
guns of 3, s, 7, and 9-inch calibers, and elongated shot hav­
ing ogival heads struck with radii of i£ calibers; also 
smooth-bore guns of similar calibers for firing spherical 
shot. From the data derived from these experiments he 
constructed and published, from time to time, extensive 
tables connecting space and velocity, and time and velocity, 
which for accuracy and general usefulness have never been 
excelled. The first of these tables was published in 1870, 
and his Final Report, containing coefficients of resistance 
for ogival-headed shot, for velocities extending from 2800 
f. s. to 100 f. s., was published in 1880. These experiments 
will be noticed more in detail further on.

General Mayevski conducted some experiments at St. 
Petersburg, in 1868, with spherical projectiles, and in the 
following year with ogival-headed projectiles, supplement­
ing these latter with the experiments made by Bashforth in 
1867 with 9-inch shot. An account of these experiments, 
with the results deduced therefrom, is given in his “ Traite 
Balistique Exterieure,” Paris, 1872.

General Mayevski has recently (1882) published the re­
sults of a discussion of the extensive experiments made at 
Meppen in 1881 with the Krupp guns and projectiles. 
These latter, though varying greatly in caliber, were all 
sensibly of the same type, being mostly 3 calibers in length, 
with an ogive of 2 calibers radius. General Mayevski’s 
results, together with Colonel Hojel’s still more recent dis­
cussion of the same data, will be noticed again.

M ethods o f  D e te rm in in g  R esistances.— If a pro  
jectile be fired horizontally, the path described in the first 
one or two tenths of a second may, without sensible error, 
be considered a horizontal right line; and, therefore, what­
ever loss of velocity it may sustain in this short time will be 
due to the resistance of the air, since the only other force 
acting upon the projectile, gravity, may be disregarded, as 
it acts at right angles to the projectile’s motion. For ex­
ample, an 8-inch oblong shell, having an initial velocity of
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1400 f. s., will describe a horizontal path, in the first two- 
tenths of a second after leaving the gun, of 278 ft., while its 
vertical descent due to gravity will be less than 8 inches. 
Moreover, if its velocity should be measured at the distance 
of 278 ft. from the muzzle of the gun, it would be found to 
be but 1380 f. s., showing a loss of velocity of 20 f. s., due to 
the resistance of the air.

The relation between the horizontal space passed over 
by a projectile and its loss of velocity may be determined 
as follows :

Let w be the weight of the projectile in pounds, V and 
V ' its velocities, respectively, at the distances a and a! from 
the muzzle of the gun, in feet per second, and g  the accele­
ration of gravity. The vis viva of the projectile at the dis-

. , . w V1 | ,. w V' ’■
tance a from the gun is ----- , and at the distance a , ------ :

• g g
consequently the loss of vis viva in describing the path

a'—a, is — (V 1— V ' a) ; and this, by the principle of vis viva, is 
g

equal to twice the work due to the resistance of the air. If 
the distance a!— a is not too great, say from 100 to 300 ft., 
according to the velocity of the projectile, it may be as­
sumed that for this distance the resistance will not vary 
perceptibly; and if p is the mean resistance for this short 
portion of the trajectory, we shall have

-  (F a- F /a) — 2 (a '-a )P 
g

whence
wf V '  — V ,a)

P ~  2 g{a' — a)

As. the resistance of the air is proportional to its density, 
which is continually varying, it is necessary, in order to 
compare a series of observations made at different times, to 
reduce them all to some mean density taken as a standard. 
If 3 is the density of the air at the time the observations are 
made, and 3, the adopted standard density to which the ob-
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servations are to be reduced, the second member of the

preceding equation should be multiplied by which gives

w ( y ' - v ' )  d,
 ̂ 2g(a' — a) a

We may take for the value of ot the weight of a cubic 
foot of air at a certain temperature and pressure; d will then 
be the weight of an equal volume of air at the time of mak­
ing the experiments, as determined by observations of the 
thermometer, barometer, and hygrometer.

As f> is the mean resistance for the distance a' — a, it may
. v +  V

be considered proportional to the mean velocity, v = — — ; 

and substituting this in the above expression, it becomes
_  w v (V -V ')  8, 

r ~  g (a' ~ a) •>
(4)

By var3ring the charge so as to obtain different values 
for V and V , the resistance corresponding to different ve­
locities may be determined, and thence the law of resistance 
deduced.

In order to compare the results obtained with projec­
tiles of different calibers, the resistance per unit of surface 
(square foot) is taken ; and, to make the results less sensible 
to variations of velocity, Didion proposed to divide the 
values of p by v*, and compare the quotients (/>') instead of

/>. Therefore, making f   ̂ equation (4) becomes

W ( V - V ' )  8 ,

1 g -J ? v (a ' — a) d (5)

It will be observed that since [> is divided by the 
values of f  will be constant when the resistance varies as 
the square of the velocity; when this is not the case f  will 
evidentlj- be a function of the velocity; or f  — A 'f(v )  
(suppose), where the constant A', and the form of the func­
tion,/'^), are both to be determined.
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Two assumptions have been made in deducing the ex­
pression for (>, neither of which is exactly correct: ist, that 
the resistance can be considered constant while the pro­

' jectile is describing the short path a '— a; and, 2d, that this 
assumed constant resistance is that due to the mean velo­
city, v. The nature of the error thus committed may be 
exhibited as follows:

The exact expression for f> is

_ w dv _ wv dv
fJ ~~ g  dt ~  g  ds

Comparing this with (4), it will be seen that we have made 

\ V -  V' _  _ d v
a' — a ds .

which is true only when the path described by the projec­
tile is infinitesimal.

To determine the amount of error committed, we can re­
calculate the values of // by means of the law of resistance 
deduced from the experiments; and it will be found that in 
the most unfavorable cases the two sets of values of {>' will 
not differ from each other by any appreciable amount. For 
example, suppose the law of resistance deduced by this 
method is that of the square of the velocity ; what is the 
exact expression for [>' in terms of V — V ' and a' — a?  We 
have

,  __  {) W  dv
—  - K 1'Jr =  ~  V d s ,

and therefore

P' d s=  — w
g T Z  I ?

dv
v  .

whence, integrating between the limits V and V ,  to which 
correspond a and a', we have, since (>' is constant in this 
case,

P' = ___ ^ ___ l o g i :
1 g r .R '(a '-a )  S V'

To test the two expressions for p', take the follow
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ing data from Bashforth’s “ Final Report,” page 19, round 
486: '

F  =  2826 f. s .; V  =  2777 f. s .; w —  80 lbs.; R =  4 in. =  -J- ft.;
V — V  — 49 ; g  =  32.191 : a' — a —  150. ft., and v —
F +  ^  o --- L--- =  2801.5.

We find =  0.047463; and this is a factor ingrr R2 (a' — a)
both expressions for (/. Therefore, by the approximate 
method, 49// =  0.047463

and by the exact method,
2801.5 0.00083

(>’ =  0.047463 log
2826
2777 0.00084.

For a second example, suppose the law of resistance to 
be that of the cube of the velocity. In this case p' varies as 
the first power of the velocity, or p' =  A' v. Therefore

whence

and

A'ds =
w dv

I I

r -  w F7 F
a' — a

IIII IV ( v (V -  V')
gTT {a' -  a) V V ’

Comparing this with (5), it will be seen that (omitting the

factor^') the two equations are identical, if we assume

if =  V V ; and this is very nearly correct when, as in the 
present case, V — V' is very small compared with either 
F o r V'.

As an example of this method of reducing observations, 
the experiments made at St. Petersburg in 1868 by General
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Mayevski, with spherical projectiles, have been selected. 
In these experiments the velocities were determined by 
two Boulenge chronographs, and the times measured were 
in every case within the limits of o."io and o." 15.

The experiments were made with 6 and 24-pdr. guns 
and 120-pdr. mortars, and the velocities ranged from 745 
f. s. to 1729 f. s. At least eight shots were fired with the
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same charge; the value o fp' was calculated for each shot, 
and the mean of all the values of p' so calculated was taken 
as corresponding to the mean velocity of all the shots fired 
with the same charge. The values of a — a varied from 
164 ft. to 492 ft., the least values being taken for the 
heaviest charges, and the greatest values for the smallest 
charges. The greatest loss of velocity {V — V )  was 131 
ft., and the least 33 ft.

The values of p' deduced from these experiments are 
give'n in the following table. For convenience English 
units of weight and length are employed; that is, the 
weights of the projectiles are given in pounds, the veloci­
ties in feet per second, and the radii of the projectiles and 
the values of a! — a in feet.

V a l u e s  o f  p ’ f o r  S p h e r i c a l  P r o j e c t i l e s , d e d u c e d  f r o m  t h e  E x p e r i ­

m e n t s  m a d e  a t  St . P e t e r s b u r g  i n  1868.

Kind of Gun.
Mean

Velocity
V

Values of 
P'

Kind of Gun.
Mean

Velocity
V

Values of 
p'

6-pdr. gun 745 f- s- 0.000561 24-pdr. gun 1247 f . s. O.OOIO54
24-pdr. gun 768 “ 50s 6-pdr, gun 1260 “ 1145

120-pdr. mort. 860 “ 687 120-pdr. mort. 1339 “ 1117
6-pdr. gun 912 “ 807 6-pdr. gun 1362 “ 1189

24-pdr. gun 942 “ 7S2 24-pdr. gun 1499 “ 1138
120-pdr. mort. 1083 “ 934 120-pdr. mort. 1519 “ 1163

24-pdr. gun 1119 “ 987 6-pdr. gun 1558 “ 1189
6-pdr. gun 1122 “ O.COIIO7 24-pdr. gun 1729 “ 0.001178

These results are reproduced graphically in Fig. 3, the 
velocities being taken for abscissas, and the corresponding 
values of p for ordinates. It will be seen that the trend of 
the last seven points is nearly parallel to the axis of ab­
scissas, and may, therefore, be represented approximately 
by the right line A, whose equation is

p' —  0.00116

in which the second member is the arithmetical mean of the 
last seven tabulated values of p'.
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It was found that the remaining points could be best 
represented by a curve B, of the second degree, of the 
form o' =  p q - A , containing two constants p and q whose 
values were determined by the method of least squares, 
each tabular value of />' and the corresponding value of 
v furnishing one “ observation equation.” It was found 
that the most probable values of p and q w ere*/=  0.012 
and q =  0.00000034686; or, reducing to English units of

weight and length by multiplying p by and q by

where k is the number of pounds in one kilogramme, and m 
the number of feet in one metre, we have

(/ =  0.0002 2 83 2 +0.00000000061309 v* 

or, in a more convenient form,

,,' =  0 ^ 8 3 2  j . +  ^ J }

To find the point of intersection of the right line A with 
the curve B, equate the values of f  given by their respective 
equations, and solve with reference to v. It will be found 
that v — 1233 f. s., at which velocity we assume that the law 
of resistance changes.

In strictness there is probably but one laxo of resistance, 
and this might be, perhaps, expressed by a very complicated 
function of the velocity, having variable exponents and co­
efficients, depending, upon the ever-varying density of the 
air, the cohesion of its particles, etc. ; but, however compli­
cated it may be, we can hardly conceive of its being other 
than a continuous function. But, owing to the difficulties 
with which the subject is surrounded, both experimental 
and analytical, it is usual to express the resistance by in­

, tegral powers of the velocity and constant coefficients, so 
chosen, as in the above example, as to represent the mean 
resistance over a certain range of velocity determined by 
experiment.

* M ayevski, “  Traite de Balistique Exterieure,”  page 41.
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E xpression  for p.—The expression for p in terms of 
i s  p  =  ~  R '1 v \ p '  '

which, since p' is generally a function of v, may be written 
' p = A 'x l? " f{v )

The lesistance per unit of mass, or the retarding force, will 
therefore be ‘

*-p =  A '—

or, taking the diameter of the projectile in inches,

g p ■
w

:A ’? *  £ / ( „ )576 w ’
The first member of this equation expresses the retarding 

force when the air is at the adopted standard density and 
the projectile under consideration is similar in every respect 
to those used in making the experiments which determined 
p'. To generalize the equation for all densities of the at­
mosphere we must introduce into the second member the

factor j  ; and we will also assume, at present, that the equa­

tion will hold good for different types of projectiles if d~‘ be 
multiplied by a suitable factor (r), depending upon the kind 
of projectile used. For the standard projectile and for 
spherical projectiles, c =  1; for one offering a greater re­
sistance than the standard, c>  1; and if the* resistance 
offered is less, c <  1. Making, then,

and
A = A ' 1K-5 76

3 cdJ
we have for all kinds of projectiles

g _
w P

dv
dt (6)

C is called the ballistic coefficient, and c the coefficient of 
reduction.
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For the Russian experiments with spherical projectiles 
the standard density of air to which the experiments were 
reduced was that of air half saturated with vapor, at a tem- 
peratureof I5°C., and barometer at ora.75- In this condition 
of air the weight of a cubic metre is ik.2o6; and, therefore, 
the weight of a cubic foot ( =  3,) is 0.075283 lbs. =  526.98 grs. 
The value of g  taken was 9m.8i =  32.1856 feet. Applying 
the proper numbers, we have the following working expres­
sions for the retarding force for spherical projectiles.

Velocities greater than 1233 f. s .:

w P =  T  ’ ]o8 A =  6-3088473 — 10

Velocities less than 1233 f. s.:

o / v* \
W p =  c  v''' v  +  7 )  : ,og A =  5-6029333 -  10

r =  612.25 ft-
Oblong Projectiles: General Mayevski’s For­

mulas.— General Mayevski, by a method similar in its gen­
eral outline to that given above, the details and refinements 
of which we omit for want of space, has deduced the fol­
lowing expressions for the resistance when the Krupp pro­
jectile is employed, viz.: *

700m > v >  419“ , p =  0.0394 Jr R2 v2
<\ *

419“ > v >  375™, p=0.0*94 ~ R2
<>

375™ > v >  295“ , p =  0.0*67 x R 2
*\

295ra >   ̂> 240™, =  o.o4583 tt R2 v*
(t/

' ’

240m> t '> o m, p =  o.o\at. R  — v2
°/

Changing these expressions to the form here adopted

* Revue d?Artilleries  A p ril, 1883.
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[equation (6)], and reducing to English units of weight and 
length, they become

2300 ft. >  t/> 1370 ft.: 
g A
— p =  —  v\- log A =6.1192437- 10

1370 ft. >  v >  1230 ft .:
Z A~ p  =  -^v3; log A =  2.9808825 — IO 

1230 ft. > » >  970 ft.:
Z A~ p - - ^ v i; log A =  6.8018436— 20 

970 ft. >  v >  790 ft.:
A’ A
~ P — ~r v*> log A =  2.7734232— !o
W  L-

790 ft. > v > O ft.:
(T

z?; log A =5-6698755- 10
W  L,

Colonel H o jel’s D eductions from  tlie  K ru p p  E x ­
p erim en ts.— Colonel Hojel, of the Dutch Artillery, has 
also made a study of the Krupp experiments discussed by 
General Mayevski: and, as it is interesting and instructive 
to compare the resistance formulas deduced by each of these 
two experts, both using the same data, we give a brief syn­
opsis of Colonel Hojel’s method and results.

He expresses the resistance by the following formula, 
easily deduced from equation (6):

in which, from (4),

^  f t   ̂
! '  =  — v  / ( - ' )  

o

JK ) d I? (o '-a )
It is assumed that the loss of velocity, V — V', is some func­
tion of the mean velocity v, which can be expressed approx­
imately, for a limited range of velocity, by a monomial of the 
form

f  ty) — A v n
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in which A and n are constants to be determined. The 
method of procedure is analogous to that followed in deter­
mining p', and need not be repeated. Colonel Hojel has 
considered it necessary to employ fractional exponents, 
thereby sacrificing simplicity without apparently gaining 
in accuracy. The results he arrived at are as follows:*

700“ > v >  500“, f  (v) =  2.1868 zA81 
500” > v >  400™, /  {v) — 0.29932 zA23 
400“ >  v >  350” , /(z>) =  0.0*205524 zA83 
35om > v >  300“ , f  (v) =  o.ov21692 v* 
300“ > v >  140”, /  (v) =  0.033814 zA5 

Substituting these values of f{v)  in the equation
g K  #~ P  — —  v f{v) = ---zv zv ' 4ze/

v f {v)

and reducing the results to English units, that is, taking w 
in pounds, v in feet, and d in inches, we have as the equiva­
lents of Hojel’s expressions, all reductions being made, the 
following :

2300 ft. >  v  >  1640 ft.:

<r A
=  —  log A =  6.4211771 — 10

w

1640 ft.>  v >  1310 ft.:

=  loS A =  5-3923859-  10W  L>

1310 ft. >  & >  1150 ft.:
<r J l

fv l> =  ~C V̂ ; l0g A  =  04035263 -  10 .

1150 ft. >  v >  980 ft.:
<r A

— log A — 6.8232495 — 20

980 ft. >  v >  460 ft.:
<r

7;!l'5> l°g  A — 4-3060287 — 10

Comparison of Resistances deduced from the 
above Formulas.— Making d =  1 and ^ =  0, in the above

* Revue d 'A r tW e r ie % June, 1884.
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formulas, gives the resistance in pounds per circular inch at 
the standard density of the air. Calling this f>,, we have

A{>, —  — vn
g

The following table gives the values of for different 
velocities according to Mayevski’s and Hojel’s formulas re­
spectively; and also the same derived from “ Table de 
Krupp,” Essen, 1881:

Velocity 
in feet 

per sec.

P/ .
According

to
Mayevski.

P/
According

to
Hojel.

P' . -
According

to
Krupp.

Velocity 
in feet 

per sec.

p , .
According

to
Mayevski.

P/ .
According

to
Hojel.

p'
According

to
Krupp.

23OO 2 1 . 6 2 9 2 1 . 5 9 8 2 1 . 6 3 7 1250 5 . 8 0 7 5 . 7 1 5 5 -7 5 3
2250 2 0 .6 9 9 2 0 . 7 1 0 2 0 .6 4 3 1200 4 . S 9 9 4 .8 88 4 .9 0 4
2200 1 9 . 7 8 9 1 9 . 8 4 0 19-7 3 8 115 0 3 . 9 6 0 4 . 1 6 0 3 -9 4 3

2150 1 8 .9 0 0 1 8 .9 8 7 18 .9 0 0 110 0 3 - 1 7 1 3 - 3 3 1 3 - 1 0 5
2100 1 8 .0 3 1 1 8 . 1 5 3 1 7 . 9 6 2 1050 2 . 5 1 3 2 .6 4 0 2 .4 8 0
2050 1 7 . 1 8 3 1 7 - 3 3 7 1 7 . 0 9 1 1000 1 . 9 6 9 2.0 6 8 2 .0 4 4

2000 i 6 -355 1 6 . 5 3 8 1 6 . 2 3 7 . 950 1 . 5 8 1 1 . 7 4 9 1 . 7 2 0
1950 15-547 1 5 - 7 5 7 15 -359 900 1 . 3 4 4 1 . 5 2 7 1 . 4 8 6
I9OO 1 4 . 7 6 0 1 4 . 9 9 5 1 4 . 6 1 1 850 1 . 132 1 . 3 2 4 1 . 3 1 8

1850 13-993 1 4 . 2 5 0 1 3 .9 2 9 Soo 0 .9 4 4 ■ 1 . 1 3 8 1 . 1 6 2
1800 13 .247 13 -5 2 3 1 3 . 1 8 1 750 0 . 8 1 7 0 .9 6 9 0 .9 83
1750 1 2 . 5 2 1 1 2 . 8 1 5 1 2 .5 0 0 700 0 . 7 1 2 0 . 8 1 5 0 .8 0 4

1700 . 1 1 . 8 1 6 1 2 . 1 2 5 1 1 . 8 1 8 650 0 . 6 1 4 0 . 6 7 7 0 .6 48
1650 I I . I 3 I 1 1 . 4 5 3 n . 0 5 9 600 0 .5 2 3 0 .5 5 4 0 . 5 1 4
1600 1 0 . 4 6 7 I O . 7 1 3 10.40 0 550 0 .4 3 9 0 .4 4 6 0 . 4 1 3

1550 9 .8 2 3 9 . 9 8 1 9 -7 5 2 500 0 .3 6 4 0 . 3 5 1 0 . 3 1 3
1500 9- m 9 - 2 7 7 9 . 1 2 6 450 O .2 9 4 O .270
1450 8 .5 9 6 8 .6 0 1 8 .4 9 0 400 O .232 0 .2 0 1

1400 8 .0 1 4 7 . 9 5 4 7 .9 2 0
1350 7 - 3 1 5 7 -3 3 4 7 -23S
1300 6 -535 6 . 6 4 1 6 -445

lias lifo rtli’s Coefficients.— Professor Bashforth adopt­
ed an entirely different method from that just developed to 
determine the coefficients of resistance, of which we will 
give an outline, referring for further particulars to his 
work,* which is well known in this country.

* “  Motion of Projectiles,”  London, 1875 and i88x.
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We have v =  ^ , whence, differentiating and making s

the equicrescent variable, -

dv_ ds d't
dt df

dll , . .and this value of -j- substituted in (6) gives

ds d't
-!> -

d't : V d't
w‘ d f \dt) ds* ds2

From this it follows that if the resistance varied as the cube 
d*iof the velocity, — - would be constant; and we should have 
d f

d'J_ 
'ds3=  2<5, (say);

whence, integrating twice,
' t — bf a s -f- c

which is the relation between the time and space upon this 
hypothesis. When the resistance is not proportional to the

cube of the velocity, in the equation

w
d't , , 3

=  = 2bv
will be variable, and its value must be so determined by ex­
periment as to satisfy this equation for each value of v. 
Bashforth’s method of deducing these values is briefly as 
follows :

Ten screens are placed at equal distances (150 feet) apart 
in the plane of fire, and the exact time of the passage 
of a projectile through each screen is measured by the 
Bashforth chronograph. The first, second, third, etc., dif­
ferences of these observed times are taken, which call 
dt, dt, d, , etc.

Let s be the distance the projectile has moved from 
some assumed point to any one of the screens, say the first;
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/ the constant distance between the screens; and ts< ts+li t 
etc., the observed times of the projectile’s passing succes­
sive screens. Then from a well-known equation of finite 
differences we have

, , , n in — i) ,
1  s+ n l —  t S +  r t d l  - | ---------— - —  d t

n (n — i) (« — 2) 
1.2T3 d,-1- etc.

' in which n is an arbitrary variable. Arranging the second 
member according to the powers of n, we have

terms multiplied by the cube and higher powers of n.
Since I is a function of s, we have t,= f(s)  and ts + nl =  

f{s  -(- nl). Expanding this last by Taylor’s formula, we have
dts nl d ’ t, d P

>..* =  >.+ - £  T  +  ^ T 7  +  etc-

whence, equating the coefficients of the first and second 
powers of n in the two expansions of ts + nl> we have

and

S  =  d , - ± d ,+  - U - i ^  +  etc.as 2 3 4

,d%
dsa

, , , 11 , 10 , , ,; -f- —  —  d6 +  etc.

The first of these equations gives 
ds l
df, ~  Vs ~ d l - \ d ,  +  \ d i - \ d k

and the second 
d  
ds? = i  > • = t  (< -  < + tj ■ < ■ - i?  ■ <+Ac-)

where r, is the velocity and — f> the resistance per unit of

mass at the distance  ̂ from the gun.
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As an example take the following experiment made with 
a 6.92-inch spherical shot, weighing 44.094 lbs., fired from a 
7-inch gun.* The times of passing the successive screens 
were as follows : ’

Screens. Passed at, 
Seconds. d, ^3

1 2 . 9 0 0 6 8 8 4 3 1 3 0 6 1 0

2 2 . 9 8 4 9 9 8 7 3 7 3 1 6 1 0

•3 3 . 0 7 2 3 6 9 0 5 3 3 2 6 1 0

4 3 . 1 6 2 8 9 9 3 7 9 3 3 6 1 0

5 3 . 2 5 6 6 8 9 7 1 5 3 4 6 1 0

6 3 - 3 5 3 8 3 1 0 0 6 1 3 5 6 1 1

7 3 - 4 5 4 4 4 1 0 4 1 7 3  6 7 1 1

8 3 - 5 5 8 6 1 1 0 7 8 4 3 7 8

9 3 . 6 6 6 4 5 1 1 1 6 2

1 0 3 . 7 7 8 0 7

T o  f i n d ,  f o r  e x a m p l e ,  t h e  v e l o c i t y  a t  t h e  f i r s t  s c r e e n ,  w e  

h a v e

1 5 0

1 0 . 0 8 4 3 1 — 1 0 . 0 0 3 0 6  +  ^ 0 . 0 0 0 1 0

and at the seventh screen

_  ! 50 .

1 8 1 1 . 4  f. s . ,

1 4 6 5 . 3  f.  s .
7 o .  1 0 4 1 7  —  \  0 . 0 0 3 6 7  +  ^  O . O O O I  I

The retarding forces at the same screens are as follows:

V
pt —  i - i (o. 00306 — o . 00010) =  o . 000000131 56 V *

g

wt’1 (15°)'
a n d

--2b,v;

—  ,O, =   ̂ ( 0 . 0 0 3 6 7  —  0 .  O O O 1 1 ) =  0 . 0 0 0 0 0 0 1 5 8 2 2  Z<7'■ =  2b ,  v 7 .

As these small numbers are inconvenient in practice,

* Bashforth, page 43.



e x t e r i o r  b a l l i s t i c s . 35
Bashforth substituted for them a coefficient K, defined by 
the equation

* = 2* 7 ^ ( iooo )’■

In the experiment selected above the weight of a cubic 
foot of air was 553.9 grains =  0, while the standard weight 
adopted was 530.6 grains =  dr Therefore we have

and

o .00296
(!5o)s X (1000)3 X 44-094

(6.92)’
53Q-6553-9 = 1 1 6 .1

0.00356
0.00296 K ,—  139.6*

That is to say, when the velocity of a spherical projectile 
is 1811.4 f. s., A' =  116.1 ; and when its velocity is 1465.3 
f. s., K =  139.6. By interpolation the values of K, after 
having been determined for a sufficient number of velo­
cities, are arranged in tabular form with the velocity as 
argument.

Bashforth determined the values of K  by this original 
and beautiful method for both spherical and ogival-headed 
projectiles; and for the latter for velocities extending from 
2900 f. s. down to 100 f. s. The experiments upon which 
they were based were made under his own direction at 
various times between 1865 and 1879, with his chronograph, 
probably the most complete and accurate instrument for 
measuring small intervals of time yet invented.

Law of Resistance deduced from Bashforth’s 
K .— It will be seen, by examining Bashforth’s table of K  for 
ogival-headed projectiles, that as the velocity decreases 
from 2800 f. s. down to about 1300 f. s., the values of K  
gradually increase, then become nearly constant down to 
about 1130 f. s., then rapidly decrease down to about 1030 
f. s., become nearly constant again down to about 800 f. s., 
and then gradually increase as the velocity decreases, to the

* Bashforth’s “ Mathematical Treatise,”  page$7.
f
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limit of the table. These variations show that the law of 
resistance is not the same for all velocities, but that it 
changes several times between practical limits. We may 
use Bashforth’s K  for determining these different laws of 
resistance as follows :

We have for the standard density of the air,

and

g  . , d' Kv°
—  p  =  2 b V  =  ---- ,--------- rjw 1 w (1000)

r' = 576 p
sc ds zf

(7)

from which we get
, ... 576 K  v

■ f> ~g{ioooy
The values of [>' have been computed by means of this 

formula, for ogival-headed projectiles, from v =  2900 f. s. to 
v =  100 f. s., and their discussion has yielded the following 
results:

Velocities greater than 1330 f. s.:
o sl

^-p =  —  vi ; log A =  6.1525284 — 10

1330 f. s. >  v >  1120 f. s .:
O

^ =  log A =  3.0364351 — 10

1120 f. s. >  v >  990 f. s .:
A

S  !J — ~q  v°; log A =  3.8865079 — 20 

990 f. s. >  v > 790 f. s .:
pr

log A =  2.8754872 — 10

790 f. s. > v >  100 f. s .: 

w p~ T ^ ; log ^ =  5-7703827- 10

These expressions, derived as they are from Bashforth’s
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coefficients, give substantially the same resistances for like 
velocities as those computed directly by means of equation 
(7). The agreement between the two for high velocities is 
shown graphically by Plate I., in which A is Bashforth’s 
curve of resistance, while that part of the parabola, B, com­
prised between the limits z/=28oo f. s. and ^=1330 f. s., is 
the curve of resistance deduced from the first of the above 
expressions. If, however, we compare these expressions 
with those deduced by Mayevski or Hojel from the Krupp 
experiments, it will be found that these latter give a less 
resistance than the former for all velocities.

This is undoubtedly due to the superior centring of the 
projectiles in the Krupp guns over the English, and to the 
different shapes of the projectiles used in the two series of 
experiments, particularly to the difference in the shapes of 
the heads. The English projectiles, as we have seen, had 
ogival heads struck with radii of 1̂  calibers, while those 
fired at Meppen had similar heads of 2 calibres, and, 
therefore, suffered less resistance than the former indepen­
dently of their greater steadiness.

Com parison o f R esistan ces.— Let /> and j>/ be the re­
sistances of the air to the motion of two different projectiles 
of similar forms ; w and wt their weights ; S  and S/ the areas 
of their greatest transverse sections; d and d, their dia­
meters ; and D and D, their densities. Then, if we suppose, 
in the case of oblong projectiles, that their axes coincide 
with the direction of motion, we shall have from (6) for the 
same velocity, since S  and St are proportional to the squares 
of their diameters,

w
g_
wtp,

S_
IV

n
w,

that is, for the same velocity the resistances are proportional 
to the areas of the greatest transverse sections, while the 
retardations are directly proportional to the areas and in­
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versely proportional to the weights. For spherical projec­
tiles we have

that is, for spherical projectiles the retardations are in­
versely proportional to the products of the diameters and 
densities. This shows that for equal velocities the loss of 
velocity in a unit of time will be less, and, therefore, the 
range greater, cateris paribus, the greater the diameter and 
density of the projectile.

As the weight of an oblong projectile is considerably 
greater than that of a spherical projectile of the same caliber 
and material, it follows that the retardation of the former 
for equal velocities is much less than the latter, indepen­
dently of the ogival form of the head of an oblong projectile 
which diminishes the resistance still more. Indeed, the re 
tarding effect of the air to the motion of a standard oblong 
projectile, for velocities exceeding 1330 f. s., is less than for a 
spherical projectile of the same diameter and weight, and 
moving with the same velocit}', in the ratio of 14208 to 
20358. As an example, if d and w are the diameter and 
weight of a solid spherical cast-iron shot which shall suffer 
the same retardation as an 8-inch oblong projectile weighing 
180 lbs. and moving with the same velocity, we shall have, 
since we know that a solid shot 14.87 inches in diameter 
weighs 450 lbs.,

The retarding effect of the air to the motion of projectiles

therefore

^ _ ( i4 -87)3 X 180 X 20358
450 X 64 X 14208

29.65 inches

and
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of different calibers blit having the same initial velocity and 
angle of projection, is shown graphically in Fig.4, which was 
carefully drawn to scale. A is the curve which a projectile 
would describe in vacuo, B  that actually described by a 
spherical projectile 14.87 in diameter weighing 450 lbs., and 
C that described by a spherical shot 5.9 inches in diameter

weighing 26.92 lbs. The initial velocity of each is 1712.6 
f. s., and angle of projection 30°.

Example.— Calculate the resistance of the air and the re­
tardation for a 15-inch spherical solid shot moving with a 
velocity of 1400 f. s. Here d =  14.87 in., w=4$o lbs., and 
A =  20358X io~8. .

Substituting these values in equation (6), we have

' that is, at the instant the projectile was moving with a 
velocity of 1400 f. s. it suffered a resistance of 2743 lbs. ; 
and if this resistance were to remain constant for one second 
the velocity of the projectile would be diminished b}’ 196.07 
ft. As, however, the resistance is not constant, but varies as 
the square of the velocity, it will require an integration to 
determine the actual loss of velocity in one second.

We have from (6)

_  (I4-87)2 v  20358 X (1400)2 =  2743 lbs.,

and
dv _  (i4.87)a

X ^ r -  X (1400)2 =  196.07 f. s .;dt 450

dt tv
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Or
dv _ tV
_ Q
V w

whence, integrating between the limits V, v, we have

V
V ~  ifi + A  Vt zv

Now, making V =  1400 and t =  1, we find v =  1228 f. s .; 
and the loss of velocity in one second is 1400— 1228= 172 ft.



CHAPTER III.

D I F F E R E N T I A L  E Q U A T I O N S  O F  T R A N S L A T I O N — G E N E R A L  

P R O P E R T I E S  O F  T R A J E C T O R I E S .

Preliminary Considerations.— A projectile fired from 
a gun with a certain initial velocity is acted upon during its 
flight only by gravity and the resistance of the air; the 
former in a vertical direction, and the latter along the tan­
gent to the curve described by the projectile’s centre of 
gravity. It will be assumed, as a first approximation, that 
the projectile, if spherical, has no motion of rotation; and, 
in the case of oblong projectiles, that the axis of the pro­
jectile lies constantly in the tangent to the trajectory ; also 
that the air through which it moves is quiescent and of uni­
form density. As none of these conditions are ever fulfilled 
in practice, the equations deduced will only give what may 
be called the normal trajectory, or the trajectory in the plane 
of fire, and from which the actual trajectory will deviate 
more or less It is evident, however, that this deviation 
from the plane of fire is relatively small; that is, small in 
comparison with the whole extent of the trajectory, owing 
to the very great density of the projectile as compared with 
that of the air.

Notation.— In Figure 5, let O, the point of projection, 
be taken for the origin of rectangular co-ordinates, of which 
let the axis of X  be horizontal and that, of Y  vertical. Let 
O A be the line of projection, and O B E  the trajectory de­
scribed. The following notation will be adopted :

g denotes the acceleration of gravity, which will be taken 
at 32.16 f. s .;

w the weight of the projectile in pounds; 
d its diameter in inches;
(p the angle of projection, A O E ;
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V the velocity of projection, or muzzle velocity ;
U the horizontal velocity of projection =  V cos <p; 
v the velocity of the projectile at any point M  of the 

trajectory ;
d- the angle included between the tangent to the curve 

at any point M  and the axis of X ,=  T M H ; 
o) the angle of fall, C E O ;

Y

u the horizontal velocity — v cos
t the time of describing any portion of the trajectory 

from the origin ;
s the length of any portion of the arc, as 0 m;
X  the horizontal range, 0 E ;
T the time of flight;
ft the resistance of the air, or the resistance a projectile 

encounters in the direction of its motion, in pounds.
Differential Equations of Translation.— The ac­

celeration* in the direction of motion due to the resistance

of the air is — f t ;  and the corresponding acceleration due to 
w '

gravity is g  sin d ; therefore the total acceleration in the 
direction of motion is expressed by the equation,

ilv
dt <r sin ft (8)

The velocities parallel to X  and Y  are, respectively,

* The term “ acceleration’ '  is here used for retardation. T o  avoid multiplying terms re­
tardation will be regarded as negative acceleration.
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v cos #and v sin d ; and the accelerat ions parallel to the same

g o '
axes are —  n cos d and g-\- — p sin d.w 1 iv
Therefore

and

d (v cos d) 
dt

d (v sin d) 
dt

—  /> cos d tv

cr ,
g --- - - p sin dW

(9) '

Performing the differentiations indicated in the above 
equations, multiplying the first by sin d and the second by 
cos d, and taking their difference, gives

V d d q , .- ^ -  =  - g c o s d  (io)

Introducing the horizontal velocity u — v cos d in (9) and 

(10), and substituting for -* p its value from (6), they become, 

making f  (v) — vn,
du   A n "  , .
Iit C cos"-1 d

and
u d d 

dt —  — g  cos2 d (12)

(13)

whence, eliminating dt,
d d g  C du 

"cos"’ 1 d ~  Id71
Symbolizing the integral of the first member of (13) by 

(d)„, that is, making

co s"1 d
7Z C

and writing for the sake of symmetry, for — , we shall 

have ■
fd u  „

(d)n = n  & f --- - = ------- \-C ̂ J  un+l i un
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If (i) is the value of (9) when u is infinite, we 
and therefore

have

bn

whence

| (0. -  | =■

and
k sec 9

j (*)» — ('*)« [ "

From (i i) we have
C o dudt — ----- - cos” 1 9 —A it

and this substituted in the equations
d x— udt, dy — it tan 9 dt, ds — it sec 9 dt,

gives

dx = C o du— cos” 1 9 —— A it '
C .  r. r, dudy —  sin 9 cos”"2 9

C n dllds— ---- - cos” 2 9 - j rA it*1

From (12) we have
,  It d 9 11 , gdt — — — r-r — ----- d tan 9o cos2 9 g

whence, as before,

dx = ----- d tan 9
g

dv = ----- tan 9 d tan 9rt ‘

ds — — — sec 9 d tan 9
O '

( h ) 

(15)

(16,

(17;

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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Eliminating u from these last four equations by means 

°f (i5)> they take the following elegant forms:

dt = k d tan 9-
O'* I (0« -  (#). f

dx R d tan 1}
S j (*% -(*).}-

dy = Ii‘ tan <) d tan 9
O'

| (*)« — (V)n l n

(25)

(26)

(27)

^ _ /P sec S d tan 9 (28)

8 { ( 0 - - (»).}-

Remarks.— Subject to the conditions specified in the pre­
liminary considerations, equations (16) to (20) or (25) to (28) 
contain the whole theory of the motion of translation of a 
projectile in a medium whose resistance can be expressed by 
an integral power of the velocity. Equation (16) gives the 
velocity in terms of the inclination ; (18) and (19) or (26) and 
(27), could they be integrated generally, would give the co­
ordinates of any point of the trajectory, while the time would 
depend upon the integration of (17) or (25). But, unfortu­
nately, the “ laws of resistance” which obtain in our atmo­
sphere do not admit of the integration of these equations ; 
we are, therefore, obliged to resort to indirect solutions 
giving approximations more or less exact. Of these many 
have been proposed by different investigators; but, with 
few exceptions, they are either too operose for practical use 
or not sufficiently approximate.

General Didion, in the fifth section of his “ Traite de 
Balistique,” gives a full and interesting rdsumd of the labors 
of mathematicians upon this difficult problem up to his 
time (1847), and in the same work gives an original solntion 
of his own of great value. Within the last quarter of a cen­
tury much has been accomplished to improve and simplify 
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the methods for calculating tables of fire and for the solution 
of the various problems relating to trajectories ; and we will 
endeavor in the following pages to present such of these 
methods as are of recognized value, developed after a uni­
form plan and based upon the preceding differential equa­
tions.

G en eral P ro jierties o f  T ra jecto ries.— Though it 
is impossible with our present knowledge to deduce the 
equation of the trajectory described by a projectile, there 
are certain general properties of such trajectories which 
may be determined without knowing the law of resistance, 
if we admit that the resistance increases as some power of 
the velocity greater than the first, from zero to infinity;

whence, making — =  f{v), we shall have f  (v) >  o, and

V a ria tio n  o f  th e  V elo city— M inim um  V elocity .
— The acceleration in the direction of motion is [equation (8)]

in which — ^sin & is the component of gravity in the direc­
tion of motion; and, therefore, whether the velocity is in­
creasing or decreasing with the time at any point of the tra­
jectory, depends upon the algebraic sign of the second mem-

depends upon the sign of sin <?. In the ascending branch 
sin <? is positive, and, therefore, from the point of projection 
to the summit the velocity is decreasing. At the summit 
sin # =  o, and at this point gravity, which has hitherto con­
spired with the resistance to diminish the velocity, ceases 
to act for an instant in the direction of motion, and then, as 
sin ■& changes sign in the descending branch, begins to act 
in opposition to the resistance; that is, its action tends to 
increase the velocity. The component of gravity acting 
perpendicular to the projectile’s motion (g  cos 9), and which

/ ( ° c )=  »•

dv
dt [/(») +  sin #]

ber; and this, since /  (v) ( considered positive,
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is a maximum at the summit, tends to increase the in­
clination in the descending branch, and thus to increase 
(numerically) — sin #, until at a certain point of the de­
scending branch where the inclination is (say) —  &' the 
acceleration of gravity in the direction of motion has in­
creased until it just equals the retardation due to the re­
sistance of the air, whicl} latter has continually decreased 
with the velocity. Beyond this point, as the component of 
gravity in the direction of motion still increases with the 
inclination while the resistance remains constant for an in­
stant, the velocity also increases; and, therefore, at the 
point where

/ ( z » ) = -  =  — sin &' w

the velocity is a minimum, and — o.

Passing the point of minimum velocity, the acceleration 
of gravity and the retardation due to the resistance of the 
air both increase; but that there is no maximum velocity, 
properly speaking, may be shown as follows:

Differentiating the above expression for the acceleration, 
we have

d ’ v
I f

xdv
S f  W-Jj . d»■ SoosS —

and putting in place of ^  its value from (io), we shall have

iPv
df

£  C O S

and this is necessarily positive whenever — =  0. The velo­

city, therefore, can only be a minimum ; but it tends towards 

a limiting value, viz., when — =  i, and S -  —W 2

L im itin g  V e lo c ity .— As the limiting velocities of all 
service spherical projectiles are less than 1233 f. s., we can
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determine these velocities by means of the expression for 
the resistance given in Chapter II., from which we get

where A =0.000040048 and r —  610.25. Solving with re­
ference to v, we get

which gives the limiting velocity.
The following table contains the limiting velocities of 

spherical projectiles in our service calculated by the above 
formula :

Solid Shot. . d  
Inches.

70
Lbs.

Final
Velocity.

Feet.
1 Shells 

Unfilled.

1

Inches.
tv

Lbs.

Final
Velocity.

iFeet.

20-illcll 19.87 1080 859 15-inch 14.87, 330 726

15-inch 14.87 450 7 8 3  . 13-inch 12.87 216 682
13-inch 12.87 283 743 10-in ch 9.87 101.75 635
10-inch 9.87 128 684 8-inch 7.88 45 561

12-pdr. 4.52 12.3 526 12-pdr. 4.52 8-34 4 5 8

Limit of the Inclination of the Trajectory in the 
Descending Branch.—We have assumed above that the 
descending branch of the trajectory ultimately becomes 
vertical. To prove this, take equation (10), viz.:

and integrating from a point of the trajectory where b — tf 
and t =  o, we have

As the velocity v, between the limits t =  o and t =  x  , is 



E X T E R I O R  B A L L I S T I C S . 49
finite and continuous, and cannot become zero, we have, 
since v is a function of b, 1 .

K db
cos bS =■ K  l o S

tan { *— +  -l \4 2
, .. btan (---- \----\4 2

X "

where K  is some value of v greater than its least, and less 
than its greatest value between the limits of integration.

As & is negative in the descending branch, the above

equation shows that, when t is infinite, b is equal to — -.

From (24) we have

ods v. db
C O S  b

and, therefore, when t is infinite,

/ <!>
_ X /J

db
C O S  b

^  log
tan

M 2

t a n ----
: K ' log

4̂
tan(-+ ^  

\4 2
tan o

where K ' is some value of 7/ greater than its least, and 
less than its greatest value between the limits of inte-

, . tan (7  +  f- )  . . .
gration; and, as lo g ----- ------ --  is infinite, so is the arc
' tan o
which corresponds to t — Oj.

Asymptote to the Descending- Branch.— As the
tangent to the descending branch at infinity is vertical, if it 
can be shown that it cuts the axis of X  at a finite distance, 
it is an asymptote. To determine this, take equation (22)
which gives

Kx -r. ' db =  k ’ f  +

where K "  is a finite quantity, since v2 is finite between the 
limits of integration. Therefore the descending branch has 
a vertical asymptote.
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Radius of Curvature.— Designate the radius of curva-

(since the trajectory is concave toward the axis of X ) ; we 

also have ds =  vdt; consequently y =  — an<̂  therefore 

from (12) H
1? ov =  — sec a \ 
g

The radius of curvature is therefore independent of the 
resistance of the air, and at any point of the trajectory de­
pends only upon the velocity and the inclination, and, there­
fore, has the same value for the corresponding points of a 
parabola described by a projectile in vacuo. The above ex­
pression shows that the radius of curvature decreases from 
the point of projection to the summit of the trajectory, 
since v and sec /? both decrease between those limits. Be­
yond the summit v still decreases, but as sec d- increases we 
cannot determine by simple inspection where y ceases to 
decrease and becomes a minimum. Differentiating the ex­
pression for y, we have

dy_
dd

2v sec /? dv 
Z d!) 4- —  tan /? sec /?I .

From (13) and (6) we have

d(v cos /?)
IB- — v w

whence, differentiating and reducing,

dv   v ( P
dd cos /? \ w sin /?

dySubstituting this in the expression for gives

dy _  
dd ~ —  sec2 /? 

g 3
This equation shows that beyond the summit dy . .15 p o s i -
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- . 2 o .tive up to the point where — ~|- 3 sin & =  o, and then

changes its sign. At this point, therefore, the radius of 
curvature becomes a minimum and afterwards increases to 
infinity.

At the point of maximum curvature we have, in conse- 
. . 20 .

quence of the condition —  -f- 3 sin $ =  o,

dv
~df) — ---- v tan ??2

and therefore, since d is negative in the descending brqnch,
clu . . . . .- j j  is positive at that point, and v is decreasing with #;

in other words, the velocity has not yet become a mini­
mum. Therefore the point of maximum curvature is near­
er the summit of the trajectory than the point of minimum 
velocity.



CH APTER  IV.

R E C T I L I N E A R  M O T IO N .

Relation between Time, Space, and Velocity.—
For many practical purposes, and especially with the heavy, 
elongated projectiles fired from modern guns, useful results 
may be obtained by considering the path of the projectile 
a horizontal right line, and therefore unaffected by gravity. 
Upon this supposition & becomes zero, and equations (17), 
(18), and (20) become -

whence integrating, and making t and j- zero when 7 '=  U, 
we have

When n =  2, the above expression for  ̂ becomes inde­
terminate. In this case we have

and

and
r  j 1___________ ! ____ )

} (n — 2) A v*-2 {11 —2 ) A V”"2 f

Writing, for convenience,

these equations become

and
s =  c\s{v ) -  s(v)\-- (30)
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C dv

whence

| log V  — log v

and therefore, when n =  2,

Equations (29) and (30) (or their equivalents) were first 
given b}r Bashforth in his “ Mathematical Treatise,” Lon­
don, 1873. hie also gave in the same work tables of 5  (v) and 
T{v) for both spherical and elongated shot; the former ex­
tending from v =. 1900 f. s. to v =  500 f. s., and the latter 
from v =  1700 f. s. to v — 540 f. s. In a “ Supplement” to his 
work above cited, published in 1881, he extended the tables 
for elongated projectiles to include velocities from 2900 f. s. 
to 100 f. s.

Projectiles differing- from the Standard. —It will 
be seen that the value of the functions T(z/)and S (v) depend 
upon those of v and A, the former of which is independent 
of the nature of the shot, while the latter depends partly 
upon the form of the standard projectile, which in this 
country and England has an ogival head struck with a 
radius of i-J- calibers, and a body 2\ calibers long. The fac-

the projectile, the density of the air, and the coefficient c; 
which latter varies with the type of projectile used. The 
factor A varies, therefore, with c; but by the manner in which 
A and c enter the expressions for t and s, it will be seen 
that the results will be the same if we make A constant, 
and give to t a suitable value determined by experiment for 
each kind of projectile. By this means the tables of the 
functions T{v) and S{v), computed upon the supposition 
that c — 1, can be used for all types' of projectiles. We 
will now show how these tables may be computed for ob­
long projectiles, making use of the expressions for the re­

depends upon the weight and diameter of
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sistance derived from Bashforth’s experiments given in 
Chapter I.

Oblong Projectiles, Velocities greater than 1330
f. S.— For velocities greater than 1330 f. s. we have « =  2 
and log A =6.1525284 — 10; therefore

T (v) —  and T ( V ) = - ^ rw  Av x 1 A V
or, since the value of t depends upon the difference of T{v) 
and T(V), we may, if convenient, introduce an arbitrary 
constant into the expression for T(v). Therefore we may 
take .

and, similarly,

^ ( V )  =  ~  log V  +  log Q' ĵ —  log ^

To avoid large numbers and to give uniformity to the 
tables we will determine the constants Q1 and Q\ so that 
the functions shall both reduce to zero for the same value 
of v ; and it will be convenient to begin the table with the 
highest value of v likely to occur in practice, which we will 
assume (following Bashforth) to be 2800 f. s.

We therefore have •

A (2800 ) ° ^  28002 log5f e = °  e'. =  28°°
Substituting the above values of A, <2,, and Q\ in the 

expressions for T(v) and S (v), and reducing, we have for 
velocities between 2800 f. s. and 1330 f. s.

T (v )=  [3.8474716] - i  — 2.5137

and
S(v) =  55866.12 — [4.2096873] log v.

The numbers in brackets are the logarithms of the nu­
merical coefficients of the quantities to which they>tare
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prefixed ; and the factor log v is the common logarithm of 
v, the modulus being included in the coefficient.

V elo cities  b etw een  1 3 3 0  f. s. and 11 20  f. s.— For 
velocities between 1330 f. s. and 1120 f. s. we have n =  3 
and log A —  3.0364351 —  10; therefore, as before,

A rb itra ry  C onstants.— To deduce suitable values for 
the arbitrary constants Q, and Q\, we must recollect that 
the function representing the resistance of the air changes 
its form abruptly when the velocity is 1330 f. s .; and to 
prevent a correspondingly abrupt change in our table at 
the same point— that is, to make the numbers in the table a 
continuous series— we must give to Qa and Q\ such values 
as shall make the second set of functions equal in value to 
the first when ^=1330. They will, therefore, be deter­
mined by the following relations:

in which the A in the first member must not be confounded 
with that in the second. Making the necessary reductions, 
we have

V elo cities  betAveen 1120  f. s. an d  9 9 0  f. s.— For
velocities between 1120 f. s. and 990 f. s. we have n — 6 
and log A —  3.8865079 — 20 ; therefore

2800,
1 )

and

and
T{v) —  [6.6625349] ^5-+ 0.1791 

5 (v) = . [6.9635649] — 1674.1
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The constants must be determined as before, by equating 
the above expressions to the corresponding ones in the case 
immediately preceding, making v =  1120. The results are, 
all reductions being made,

T(v) —  [15.4145221] ^  +  2.3705

and

S (v) —  [I5-5II432i] ^- +  4472.7
V elocities b etw een  9 9 0  f. s. and 79 0  f. s.— For

velocities between 990 f. s. and 790 f. s. we have n =  3 and 
log A =  2.8754872 — 10; whence

r w  = E f ( ^ + a )
and

Proceeding as before, we have

T 0 ) =  [6.8234828] —2 — 1.6937v
and ■5 (v) =  [7.1245128] 1 — 5602.3

Velocities less than 790 f. s.— For velocities less 
than 790 f. s. we have n =  2 and log A —  5.7703827 — 10; 
therefore

+ a )
and

whence, as before,7»  =  [4.2296173] ±- -  12.4999

and 5  0) =  124466.4 -  [4-5918330] log v.
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B a llis tic  Tables.— Table I. gives the values of the time 

and space functions for oblong projectiles, computed by the 
above formulas, and extends from v =  2800 f. s. to  ̂=  400 
f. s. The first differences are given in adjacent columns; 
and as the second differences rarelj' exceed eight units of 
the last order, it will hardly ever be necessary to consider 
them in using this table.

Table II. gives the values of these functions for spherical 
projectiles, and is based upon the Russian experiments dis­
cussed in Chapter II.

E X A M P L E S  O F  T H E  U S E  O F  T A B L E S  I.  AJ^D II.

Example 1.— The velocity of an 8-inch service projectile 
weighing 180 lbs. was found by the Boulenge chronograph 
to be 1398 f. s. at 300 ft. from the'gun. What was the 
muzzle velocit}' ?

I 80Here C =  v =  1398, and x =  300, to find V. From 

(30) we have .

S{V)  =  S ( v ) - T

and from Table I.

•S(i 398) =4903-8 —
also

whence

3 X 25.2 5 ■■ 4888.7

s
~C 300 x  7t o =  1067

S(V) =  4782.0

.-. V —  1415 - f 5 X 2i.6 
24.8

vf
=  1419.4 f- s.

Example 2.— Determine the remaining velocity and the 
time of flight of the 12-inch service projectile, weighing 800 
lbs., at 1000 yds. from the gun, the muzzle velocity being 
1886 f. s.
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i. V and s are given, to find v; where d —  12, w — %00 

V =  1886, s —  3000, and C - ^°°

We have
3000 X 144144

800s{v) — s ( m 6 )  +

From Table I.,5  (1886) =  2803.7 — 0.6 X 37-4 =  2781.3
3000 X 144 _ 540.0

1740

800
■ £(») =  33213

10 X 27.0
40.3

■ =  1746.7 f. s.

2. V and v are given, to find t ; from Table I.,
T{v) =  1.516 

. . T { V ) — 1.217

T(v) — T(V) =  0.299

. •. t =  0.299 X — - =  i".66 144
” Example 3.— Suppose we wish to determine the value 
of the coefficient of reduction, r, for a particular projectile 
whose form differs from the standard projectile. From (30) 
we have

•zv s
C =

whence c d ’ — S ( v ) - S ( V )
_ w S(v) — S ( V)

It is, therefore, only necessary to measure the velocity 
of the projectile at two points of its trajectory as nearly in 
the same horizontal line as practicable, and at a known dis­
tance apart, and substitute the values thus obtained in the 
above formula. For example, the 40-centimetre (71-ton) 
Krupp gun fires a projectile weighing 1715 lbs. with a 
muzzle velocity of 1703 f. s. By experiment it is found 
that the velocity at 1800 ft. from the gun is 1646 f s. What 
is the value of c for this projectile?
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Here V—  1703, v — 164.6, j =  1800, w =  1715, and d —  

15.748.
From Table I.,

S (v) =  3742.2 
S ( V ) =  34997

log 242.5 =  2.3846580

log 0-8397959
C log S =  6.7447275 

log c =  9.9691814 r =  0.9315 
.- .lo g  (7=0.87061451

Extended Ranges.— For the heaviest elongated pro­
jectiles, fired with high initial velocities, the remaining 
velocities and times of flight may be determined by this 
method with sufficient accuracy for quite extended ranges ; 
that is to say, for ranges due to an angle of projection of 
io° or 120, or, in other words, when the least value of cos & 
for the entire trajectory does not depart very much from 
unity, its assumed value.

Example 4.— Compute the remaining velocities, with the 
data of the last example, at 1800 ft., 3600 ft., 5400 ft., . . . up 
to 18000 ft. from the gun.

The work may be arranged as follows:
-S »  =  34997. log (7 =  0.8706145.

s
C

S (v ) V
V

Computed by 
Krupp’s Formula.

1800 ft. 242.47 3742.2 1645 f. s. 1646 f. s.
3600 “ 484.9 3984.6 1589 “ 1590 “
5400 “ 727.4 4227.1 1536 “ 1536 “
7200 “ 969.9 4469.6 1484 “ 1484 “
9000 “ 1212.3 4712.0 1434 “ 1434 “

10800 “ 1454.8 4954-5 1385 “ 1385 “
12600 “ 1697.3 5197.0 1338 “ 1338 “
14400 “ 1939.8 5439-5- ■ 1293 “ 1293 “
16200 “ 2182.2 5681.9 1250 “ 1251 “
18000 “ 2424.7 5924.4 121 1 “ 1211 “



6o E X T E R I O R  B A L L I S T I C S .

The numbers in the second column are simple multiples 
of the first number in that column; those in the third column 
are found by adding S (V) =  3499.7 to the numbers on the 
same lines in the second column, and the velocities in the 
fourth column are taken from Table I. with the argument 
S{v).

The velocities in the last column were computed by 
Ivrupp’s formula. They are copied, as also the data of the 
problem, from “ Professional Papers No. 25, Corps of En­
gineers, U. S. A.,” page 41.

In this example the angles of projection and fall for a 
range of 18000 feet are, respectively, 70 18' and 90 20'; while 
an 8-inch shell weighing 180 lbs. would require for the same 
range, with the same initial velocity, an angle of projection 
of i i ° 5', and the angle of fall would be 190 40'.

In this latter case the velocity computed by the above 
method would not be a very close approximation.

Comparison of Calculated with Observed Velo­
cities.— The following table, taken, with the exception of 
the last two columns, from “ Annexe a la Table de Krupp,” 
etc., Essen, 1881, shows the agreement between the observed 
and calculated velocities for projectiles having ogives of 2 
calibers. The sixth column gives the distances, in metres, 
between the points at which the velocities were measured 
(A, and A,). The seventh and eighth columns give the 
observed velocities at the distances from the gun A, and A s 
respectively. The ninth column gives the velocities at the 
distances A, from the gun computed by Krupp’s table and 
formula. The tenth column gives the velocities at the dis­
tances A, computed by equation (30), using Table I. of this 
work. The coefficient of reduction (c) was taken at 0.907, 
which is its mean value for velocities between 2300 f. s. and 
1200 f. s., as determined by a comparison of Bashforth’s and 
Krupp’s tables of resistances given in Chapters I. and II. 
The only discrepancies of any account between the calcu­
lated velocities in this column and the observed velocities 
occur when the curvature of the trajectory is considerable,
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as'in’the last four rounds, and one or two others. Equation 
(30) is based upon the supposition that the path of the pro­
jectile is a horizontal right line, and, of course, gives only 
approximate results when this path has any appreciable 
curvature. It will be shown subsequently that, to obtain 
the real velocity, the “ v ” computed by (30) should be mul­
tiplied by the ratio of the cosines of the angles of projec­
tion and fall. In No. 37, for example, it will be found that 
to attain a range of 5945 metres (3-f miles) the angle of pro­
jection would have to be 120 37', and the angle of fall would 
be 170 40'. Making the necessary correction, we should 
find the velocity to be 290.7 m.

The last column gives the remaining velocities computed 
by Mayevski’s formulas. They follow very closely those 
computed by Krupp.

In the absence of tables we may determine remaining 
velocities which exceed 1300 f. s. as follows: We have 
found, when n =  2,

As — is usually a small quantity, all its powers higher

than the first may be neglected, and we may put
V . AsI +  =r- v C

V

For oblong projectiles having ogival heads of i| calibers 
A =0.000142. If the ogive is of 2 calibers, A =0.0001316. 
This method gives correct results for distances of a mile, or 
even more, especially for the heavy projectiles used with 
modern seacoast guns. If the data are given in French units 
— that is w, 0, and d, in kilogrammes, d in centimetres, and s 
and V in metres— the value of A will be 0.000030357. •
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Example. Let ^=30.5 cm., w =  455 kg., d =  1.274 kg., 
3, =  1.206 kg., V =  520.8 m., and ^=1900 m. [Krupp’s 
Bulletin, No. 31.]

We have

and

4 5 5  X 1.206 
(30.5)“ X 1.274

0.46301

V
_____ 520.8______
0.000030357 x  1900 

0.46301

520.81-12457 =  463.1 m.

The measured velocity in this example was 465.5 m., 
while the velocity computed by Krupp was 460.1 m.



CH APTER  V.

R E L A T IO N  B E T W E E N  V E L O C I T Y  A N D  IN C L IN A T IO N .

E xpressions for tlie  V e lo city .— Equation (15), which, 
. . k*since (z) — -j- (̂ p), may be written

= * ■ { ,£ -  i r - ! . ( 3 0
gives the relation between the horizontal velocities U and u 
and the corresponding inclinations tp and 9 ; and of these 
four quantities any three being given, the fourth can be ac­
curately computed, provided, of course, that the value of k 
has been accurately determined by experiment. The func­

tions (<p)n and (9)„ are the integrals of < anc* the

lowing are the forms they take for the values of 11 here 
adopted:

(#), =  i  { tan 9 sec 9 +  log tan (^ +  y )  |

(9\  =  tan <? -f~ i  tan3 9 
(#),= tantf ) —

5 sec3 9
24

, 5sec??( 
16 f

+ ^ iogtan( i + ! )
It is evident that all these expressions become o when 

9 =  o, negative when 9 is negative, and infinite when

9 =  “ ; or, in symbols, (o) =  o,(— <?)= — (9), and =  cc

If there were but one “ law of resistance ”— in other words, 
if n had but one value for all velocities— it would be easy to 
calculate the velocity for any given value of 9 by means of
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(31). It would only be necessary to tabulate the values of (#)„ 
for all practical values of d as the argument, and to pro­

vide a similar table of with u as the argument. But, as

we have seen, n may change its value two or three times in 
the same trajectory ; and though it would be possible to 
ascertain by trial the exact point of the trajectory where 
this change occurred, yet the labor involved would be very 
great.

lias lifo rth ’s M ethod.— Professor Bashforth overcomes 
this difficulty by giving to n the constant value 3, and 
making k3 to vary in such a manner as to satisfy (31) for all 
velocities. His method of procedure is as follows: making 
n =  3 and d =  o, (31) becomes

in which U and <p are the horizontal velocity and inclination, 
respective!}', at the beginning of any arc of the trajectory 
we may be considering; and v0 the velocity at the summit. 

In Bashforth’s notation

1 3 K  d \
k* g{\ocof w'

substituting this in the above equation and multiplying by 
(1000)3 to avoid the inconvenience of very small numbers, 
we have

ioooV (1000Y_
~  W T )  ~

k_<?_ j
g zv j 3 tan f  -f- tan’ <pI

by means of which either^,, U, or <p can be determined 
when the other two are known. When the resistance can 
be taken proportional to the cube of the velocity, K  is con­
stant; but for all other velocities it is a variable, and we 
must take a certain mean of its values for the arc under con­
sideration. Prof. Bashforth takes the arithmetical mean, 
which will generally give very accurate results for arcs of
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io or 15 degrees in extent. In his work he gives the 

cessary tables for suitably determining — for all veloci
g

from 100 f. s. to 2900 f. s., and also tables giving values
3 tan <p -f- tan3 <p for all practical values of <p.

Other approximate methods involving less labor will
given further on.

High Angle and Curved Fire.— When the ini
velocity does not exceed 800 f. s., which includes nearly
mortar and howitzer practice, the law of resistance 
oblong projectiles is that of the square of the veloc
whence, making n —  2, and dropping the subscript, (31) 
comes

g
A U-■ )

<r
or, writing I  (u) for ,

jTL 'll

( p ) - ( * ) =   ̂ | / ( « ) - / ( £ 0 |  

The value of I  (u) for any given value of u can be ta
directly from Tables I. and II., the method of construct
of which will be given further on. Table III. gives (3) 
extends from 3 — o to & =  6o°.

To use (32) for computing low velocities (and also
high velocities, exceeding 1330 f. s.), we have

' ( « ) = £  { ( ? ) -  ( * ) } + n u )  

in which u and & are the only variables; (tp), and /  (

having been determined, do not change their values for 
same trajectory.

To illustrate the ease with which velocities may be 
culated by (33), take the following data from Bashfor
“ Treatise,” page 115 :
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V = j $ i  f .  s . ;  ^  =  3 0 ° ;  w  =  7 0  l b s . ,  a n d  d — 6 . 2 7  i n c h e s .

H e r e  =  7 5 1  c o s  3 0 °  =  6 5 0 . 3 8 5  f .  s . ;  a n d  f r o m  T a b l e

T  T / T 7 \  2  2  d *

I., I(U ) =  0.93354; -£= =  —  =  I-I2323-

W e  w i l l ,  f o l l o w i n g  B a s h f o r t h ,  c o m p u t e  t h e  v e l o c i t i e s  f o r  

#  =  2 8 ° ,  2 4 0 ,  2 0 0 .  .  .  —  4 0 ° .  T h e  w o r k  m a y  b e  c o n v e ­

n i e n t l y  a r r a n g e d  a s  f o l l o w s :

{ ? )  =  0 . 6 0 7 9 9  / ( £ / )  =  0 .9 3 3 5 4 .

e W »  -  ( 8 ) / ( « )
( T a b l e  I . )  

u
u  s e c  6  =  v

B a s h -
f o r t h ’ s

V

D i f f e r ­
e n c e .

3 0 ° 0 . 6 0 7 9 9 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 9 3 3 5 4 6 5 0 . 3 8 7 5 1 - 0 7 5 1 - 0 0 . 0

2 8 ° • 5 5 5 8 0 . 0 5 2 1 9 . 0 5 8 6 2 0 . q q 2 l 6 i 6 3 6 . o q 7 2 0 . 4 7 2 0 . 4 0 . 0

2 4 ° • 4 5 9 5 3 . 1 4 8 4 6 . 1 6 6 7 5 I . 1 0 0 2 9 6 1 2 . 0 3 6 6 9 . 5 6 7 0 . 2 -  . 7
2 0 ° . 3 7 1 8 5 . 2 3 6 1 4 . 2 6 5 2 4 I . i q 8 7 8 5 9 2 . 3 3 6 3 0 . 3 6 3 0 . 5 . 2
1 6 ° . 2 9 0 6 3 • 3 1 7 3 6 . 3 5 6 4 7 I . 2 9 0 0 1 5 7 5 . 6 9 5 9 8 . 9 5 9 8 . 9 0 . 0

1 2 ° . 2 1 4 1 5 • 3 9 3 8 4 • 4 4 2 3 7 1 - 3 7 5 9 1 5 6 1 . 2 3 5 7 3 - 8 5 7 3 - 5 +  . 3
8 ° . I 4 I 0 0 . 4 6 6 9 9 . 5 2 4 5 4 1 . 4 5 8 0 8 5 4 8 . 3 8 5 5 3 - 8 5 5 3 - 1 . 7

4 ° . 0 6 9 9 8 . 5 3 8 0 1 . 6 0 4 3 1 1 • 5 3 7 8 5 5 3 6 . 7 1 5 3 8 . 0 5 3 7 - 0 1 . 0

0 ° ' . 0 0 0 0 0 . 6 0 7 9 9 . 6 8 2 9 1 1 . 6 1 6 4 5 5 2 5 . 9 1 5 2 5 . 9 5 2 4 . 6 1 . 3

- 4 ° — . 0 6 9 9 8 • 6 7 7 9 7 . 7 6 1 5 1 1 . 6 9 5 0 5 5 1 5 - 7 4 5 1 7 . 0 5 1 5 - 5 i - 5
8 ° . 1 4 1 0 0 • 7 4 8 9 9 . 8 4 1 2 9 I - 7 7 4 8 3 5 0 5 . 9 9 5 1 1 . 0 5 0 9 . 3 1 . 7

1 2 ° . 2 1 4 1 5 . 8 2 2 1 4 • 9 2 3 4 5 1 . 8 5 6 9 9 4 9 6 . 5 2 5 0 7 . 6 5 0 5 . 7 1 . 9

i 6 ° . 2 9 0 6 3 . 8 9 8 6 2 I . 0 0 9 3 5 I . q 4 2 8 q 4 8 7 - 1 5 5 0 6 . 8 5 0 4 . 7 2 . 1

2 0 ° • 3 7 1 8 5 . 9 7 9 8 4 .  1 . 1 0 0 5 6 2 . 0 3 4 1 0 4 7 7 . 7 7 5 0 8 . 4 5 0 6 . 2 2 . 2

2 4 0 . 4 5 9 5 3 1 . 0 6 7 5 2 I . 1 9 9 0 6 2 . 1 3 2 6 0 4 6 8 . 2 2 ■5 1 2 . 5 5 1 0 . 2 2 . 3
2 8 ° • 5 5 5 8 0 1 . 1 6 3 7 9 1 . 3 0 7 2 0 2 . 2 4 0 7 4 4 5 8 . 3 8 5 I 9 1 5 1 6 . 8 2 . 3
3 2 ° • 6 6 3 4 3 1 . 2 7 1 4 2 r . 4 2 8 0 9 2 . 3 6 1 6 3 4 4 8 . 0 6 5 2 8 . 3 5 2 5 . 9 2 . 4

3 6 “ . 7 8 6 1 7 1 . 3 9 4 1 6 1 . 5 6 5 9 6 2 . 4 9 9 5 0 4 3 7 - 1 1 5 4 0 . 3 5 3 7 - 9 2 . 4
4 0 ° . 9 2 9 1 4 1 - 5 3 7 1 3 1 . 7 2 6 5 4 2 . 6 6 0 0 8 4 2 5 . 3 2 5 5 5 - 2 5 5 2 . 8 2 . 4

T h e  n u m b e r s  i n  t h e  s e c o n d  c o l u m n  a r e  t a k e n  d i r e c t l y  

f r o m  T a b l e  I I I .  f o r  t h e  v a l u e s  o f  9  g i v e n  i n  c o l u m n  1 .  S u b ­

t r a c t i n g  t h e  n u m b e r s  i n  c o l u m n  2  f r o m  ( < p )  ( = 0 . 6 0 7 9 9 )  g i v e s

. . . 2
t h o s e  i n  c o l u m n  3 ;  a n d  t h e s e  m u l t i p l i e d  b y  ( =  1 . 1 2 3 2 3 )

a r e  w r i t t e n  i n  c o l u m n  4 .  A d d i n g  /  ( U )  ( = 0 . 9 3 3 5 4 )  t o  

t h e s e  l a s t  g i v e s  t h e  v a l u e s  o f  / ( « )  i n  c o l u m n  5 .

T h e  v a l u e s  o f  u  a r e  t h e n  t a k e n  f r o m  T a b l e  I . ,  a n d  t h e s e  

m u l t i p l i e d  b y  s e c  9  g i v e  t h e  v e l o c i t i e s  s o u g h t .  F o r  c o m ­

p a r i s o n  t h e  v e l o c i t i e s  c o m p u t e d  b y  B a s h f o r t h ,  b y  h i s  m e t h o d  

a l r e a d y  e x p l a i n e d ,  a r e  a l s o  g i v e n  ;  a n d  i t  w i l l  b e  s e e n  t h a t
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the differences between his velocities and those computed 
by (33) are practically nil.

This method of determining velocities may be used 
without material error when the initial velocity is as great 
as 1000 f. s.

Example.— The 8-inch howitzer is fired with a quadrant 
elevation of 230 ; muzzle velocity, 920 f. s .; weight of shell, 
180 lbs.; diameter, 8 inches. What will be the velocity in 
the descending branch when & =  — 270 54' ? (See Mac- 
kinlay’s “ Text-Book,” page 109.)

Here
V 920, U =  920 cos 230 =  846.86 

I ( U) =0.40884; lo g -^ =  9.85194

The computation is as follows:
(230) — 0.43690

( -  27° 540=  — 0-55327
log 0.99017 =  9.99571 

C
_ lo g — =  9.85194

log 0.70412 =  9.84765 
I { U ) =  0.40884
/ (u) =  1.11296 . •. U2f M. =  609.4 f. s.

Mackinlay gets by Niven’s method, dividing the tra­
jectory into two parts, £/a7. =  610.6 f. s. It will be seen
that by the method developed above for calculating veloci­
ties, the length of the arc taken makes no difference in the 
accuracy of the results.

S iacci’s M ethod.— Equation (13) may be written

d& gC
cos’ d- A

~ u sec2 # du 
„ (u sec #)"+I

Since & is a function of u, there must be some constant 
mean value of sec $ which will satisfy the above definite
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integral. Representing this mean value of sec # by a, and 
writing U' and u' for aU and au respectively, we have

dd _o-gC / ' tr du'

whence

Making:

(34) becomes

cos" & - a J k. u '""

( 1_ 1 agC  j 1
w * U,n) ~ nA { u' ”

') =
2S
nA i *  +  Q

& = a C 
2

-tf-n } (34)

(35)

The values of / («') are given in Table I. for oblong pro­
jectiles, and in Table II. for spherical projectiles. The 
method of computing the /-function is entirely similar to 
that alread)' described for the 5 and T-functions, and need 
not be repeated. For oblong projectiles the formulas areas 
follows, in which, for uniformity,/^) is employed as the 
general functional symbol: '

2800 f. s. >  v >  1330 f. s.:

I  (») =  [3-3547876] p  — 0.028872

1330 f. s. >  v >  1120 f. s .:

(̂®) =[8.2947896] -p +  0.015293

1120 f. s. >  v >  990 f. s.:

. / 1 »  =  [ i 7-i 4 3 6 8 6 8 ]-L + o.o85o87

990 f. s. >  v >  790 f. s .:

/ Ĉ ) =  [8-4557375] -p —  0.061373 

- 790 f. s. >  v >  o :

1 (*) =  [S-7369333] —  o-356474
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If we compare (34) with (31) it will be seen that

a _  ( (?)« —  (#)« l ^
. | tan (p— tan#)

and this value of a renders (34) and (35) exact equations; in 
fact, reduces them to (31). It would seem at first as if 
nothing had been gained by introducing a into (35), since 
its value depends upon that of n, and must, therefore, change 
when n changes. The following table gives the values of a 
for the arcs contained in the first column, when n = 2 ,n =  3, 
and n == 6, computed by the above formula :

A r c  
to  0

n  =s a 
a

«  =  3 
a

n  = J 6  
a

3 0 °  t o  2 0 ° 1 . 1 0 6 6 1 . 1 0 6 9 1 . 1 0 7 9

C
M O

O

O
O

1 . 0 7 4 1 1 . 0 7 4 9 1 . 0 7 7 2

3 0 °  “  o ° 1 - 0 5 3 1 1 . 0 5 4 1 1 - 0 5 7 3

C
M 0

O 1 t-H 0
0

1 . 0 4 1 9 1 . 0 4 2 9 1 . 0 4 6 0

3 0 °  “  — 2 0 ° 1 . 0 4 0 9 1 . 0 4 1 8 1 - 0 4 4 3

3 0 °  “  — 3 0 ° 1 - 0 5 3 1 1 . 0 5 4 1 1 - 0 5 7 3

It is evident from this table that when the angle of pro­
jection is as great as 30°, the velocity at any point of the tra­
jectory may be computed with sufficient accuracy by using 
either set of values «; since the greatest difference between 
those in the second and fourth columns on the same line is 
but 0.0042, and this would make but a slight difference in 
the values of U' or u'. Moreover,'since U' — aV  cos tp, and 
u' =  av cos #, it is apparent that U' and u' differ less from V 
and v respectively than do U and u; and this is important 
when, as is usually the case, the law of resistance is different 
for the initial and terminal velocities.

If in the above expression for a we make n =  2, we have 
Didion’s expression for a, viz.:

a _  (?) ~  (#) 
tan <p —  tan #
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in which

^  “  i  { tan * SeC * + log tan 0  +  t ) |
Example.— A 12-inch service projectile, weighing 800 lbs., 

is fired at an angle of projection of 30° and a muzzle velocity 
of 1886 f. s. Required its velocity when (a) the inclination 
of the trajectory is 150, and (b) when the inclination is—  150.

Here d =  12,w =  800, V =  1886, and <p — 30°. From (35) 
we get

/ (’u') =  I  (V) -|- | tan <p — tan # j-

(a) & =  150. From our data we have

„ =  =  °-33687 =  , o888
tan 30 — tan 15 0.30940

U' — a V cos 30° =  1778.34 . •. /(£/') =  0.04270

and

w 800 
cP 144

tan 30° —  

I  iii’) =  0.04270 -f-

tan 150 =  0.30940
288 X 0.30940 _
800 X 1.0888

0.14500

. •. v15“

••• «' =  ” 49-77-
H49-77

a cos 150 1093.3 f. s.

(b) ft — —  150. We have

g =  . - j 3g!)+ -(1.0 - -- =  °-87911 =10400 
' tan 3 0 ° + tan 150 0.84530 ^

. U’ =z a V cos 30°= 1698.65 . ‘ . I  (U') =  0.04958
tan 30° +  tan 150 =  0.84530 

. -. I(u') =0.04958 +  0.29260 =  0.34218 
. •. u’ =  891.14 

=  887.1 f. s.

The values of vlt. and w.„, computed by (31) are 1097.6 
and 892.9 respectively.
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Siacci’s Modification of (35) for Direct Fire.—
Since in direct fire the angle of projection does not exceed 
15°, and is generally much less, the values o( a for this kind 
of fire will not differ much from unity. For example, with 
io° elevation, and an angle of fall of — 12°, we shall have 
for a

_  (10°) +  (l2°) _  0.39139 _
tan io° +  tan 120 — 0.38889 4

It is manifest, therefore, that for such small angles no 
material error would result in making a —  1; the following, 
however, is a closer approximation. If we consider that 
part of the trajectory lying above the horizontal plane 
passing through the muzzle of the gun, it will be seen that 
a should be greater than unity and less than sec <0. Siacci 
makes

»-2
' a —  (sec fp-i

therefore, when n =  2. a = 1 ;  when n =  3, a =  V  sec (f, and
4 ‘

when n — 6, a — sec <p ; and the average value of a for the 
whole trajectory generally fulfils the above condition.

This value of a substituted in (34) gives, b}T.an easy 
reduction,

'tan f  — tan 1?
n A cos’ <p

1
(n sec <f )“

or, writing u' for u sec <p, and proceeding as already ex­
plained,

tan <p- tan =  2 -  j / (?/) — I  ( V) [ (36)

1 Example.— Take the following data:

d =  12 ; w =  800; C =  ; V =  1886 ; <p —  io°. Compute
J 44

the remaining velocity in the descending branch when 
t?=  — 130. We have •

/  (u') =  cos’ <p (tan <p — tan d) +  / (F)
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and the computation will be as follows:

log (tan 10° -f- tan 13°) =  9.60980

log-^ =  9-SS630
2 log COS IO° =  9.98670

log 0.14217 =  9.15280 7 ( l886) =  0.03477

I  (it') =  0.17694 11' —  1071.76

The velocity at the same point computed by (31), divid­
ing the trajectory into three arcs, with the points of division 
corresponding to velocities of 1330 f. s. and 1120 f. s. respec­
tively, is ? '=  1081.55 f. s. This agreement is very close; 
but if we make f  —  36° and ft =  150, as in the preceding ex­
ample, we should find by this method =  1113.1; and if 
ft =  — 150, we should find =  859.3, which differ consid­
erably from their true values.

N iven ’s M ethod.— W. D. Niven, Esq., M.A., F.R.S., 
has given the following method for determining velocities 
in terms of the inclination :

Equation (13) may be written

in which, as before, a is some mean value of sec ft between 
the limits sec cp and sec ft, and u' =  a v cos ft and U’ =  a Vcos <p. 
Integrating, we have

/ : u sec ft)**
g c  r u du'
aAJ  *’ «'**

Multiplying both members by to reduce <p — ft to

degree^, and making
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and

the above equation becomes

(38)

which is the equivalent of Niven’s expression for the velo­
city and inclination. Mr. Niven has published a table of the 
//function for velocities extending from 400 f. s. to 2500 f. s. 
(See Table VI. in Mackinlay’s “ Text-Book.”) It will be 
seen by comparing the expressions for D (y) and I  {v) that 
we have the relation

and, therefore, in terms of the /-function, (38) becomes

Comparing (37) with (31), it is apparent that to make (37) 
or (38) exact equations we must have

For direct fire Didion’s value of a may be used; but for 
high-angle firing the following gives more accurate results, 
obtained from the above equation by making n —  2 : ■

d =. 12; w =. 800; =  1886; <p =  30° and # =  — 30°;
D —  30° -{- 30° =  6o°; to find

D (v) =  9~ K v)7i

(39)

log 1.4570926

Example.— Take the following data:

* If we use Niven’s tables, in which the functions decrease with the velocity. (38) should be
written

Z> = (17')(«')}■
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We have from (38)

D («') =  D ( U') +  g - D

The computation may be conveniently arranged as fol­
lows :

log (<p) —  9.78390 
constant =  1.75812 
c log 30 =  8.52288

■ 3)0.06490
log a - - 0.02163 

log D =  1.77815 
c log C —  9.25527

log 11.3516= 1.05505

log V =  3.27554 
log a =  0.02163 

log cos f  =  9.93753

log U’ =  3.23470 
U' —  1716.74

(Niven’s Table) D ( U') =  84.6090 

~q D =  11-351$

D  iu>) — 73-2574
=  827.12 =  a v cos $ 
—  908.7 f. s.

Siacci’s method, using Table I. of this work, gives 
z>_30» =  907.5 f. s .; while equation (31) gives =  913.2 f. s. 

Modification of (38) for Direct Fire.— If we make
n - 1

a =  (sec f)~*~
we shall have, b}' a process similar to that already employed 
in Siacci’s method, the following modified form of (38), 
which can be used in all problems of direct fire, viz.:

n = ^ { D ^ - D ^ }  M
in which u' =  u sec <p. . '

Example.— Let <7=  12; zc=8oo; F = i8 8 6; y?= io°; 
^ =  — 130. The computation is as follows:
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log D =  1.36173
log cos <p =  9.9933s 

c log C =  9-25527 
log 4.0771 =  0.61035

D (1886) =  84.9966 . COSJ>
D («') =  80.9195 .• •« '=  1068.14 =  t-— ^

V  — 1079.6 f. s.
which is within 2 feet of the value of v computed by the exact 
formula (31). This modified form of Niven's method, for sim­
plicity and accuracy, seems to leave nothing to be desired.

For small angles of projection, say not exceeding 5°, we 
may put u' =  v, and cos'̂ > =  1; and (40) becomes

D =  c {  D {v) -  1){V )  | =  ^  C | I{v) -  I{V )  j

* Example.— In the preceding example suppose <p — 30.
What will be the value of # when the velocity is reduced 
to 1500 f. s. ? .

(a) By Niven's Table :
D (1886) =  84.9966 
D (1500) =  83.9359

log 1.0607 =  0.02560 
log C — 0.74473 
log D =  0.77033

D =  5°.89 =  30 — &
& =  — 2°.8g

(b) By Table L :
/ (1500) =  0.07173 
/ (1886) =  0.03477

log 0 .0 3 6 9 6  =  8 .5 6 7 7 3

l o g  ?  =  1 . 4 5 7 0 9

log C =  0-74473 
log D  =  0.76955 

D  =  5°.88 
. - . # = -  2°.88



CH A PTE R  VI.

T R A J E C T O R IE S — H IG H -A N G L E  F IR E .

As we have seen, the differential equations for x,y, t, a
s do not generally admit of integration in finite terms f
any law of resistance pertaining to our atmosphere; th
is, for any recognized value of n. It is true that Profess
Greenhill has recently* succeeded, by a profound analys
in deducing exact finite expressions for .r and y by means
elliptic functions, when n =  3; but these results, though 
great interest to the mathematician, are far too complicat
for the practical use of the artillerist. When n — 2. the e
pression for ds can be integrated and useful results deduc
therefrom, as will be seen further on.

For low velocities, such as are generally employed
high-angle and curved fire, the effect of the resistance 
the air upon heavy projectiles is comparatively slight; a
for a first (though rough) approximation we may, in su
cases, omit the resistance altogether, or, better still, we m
suppose the projectile subject to a mean constant resistan
A  still closer approximation may be obtained by taking
resistance proportional to the first power of the veloci
As the differential equations for the co-ordinates and ti
are susceptible of exact integration upon each one of the
hypotheses, we will consider them in turn.

T R A J E C T O R Y  IN  V A C U O .

Making p =  o, (9) becomes
du =  o

and therefore, in vacuo, the horizontal velocity is constant,
u =  U

Integrating (21), (22), (23), and (24) between the lim
<p and & gives, if u =  U,
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and

t =  — (tan <p — tan 3) 
g
u 2

=  —  (tan <p — tan 3)
g

7' =  9 ~  tan2??)

Vi 
g ((?)-(*))

(40
(42)

(43)

(44)

E q uatio n  of T ra je cto ry  in  V acuo.— Eliminating 
tan 3  from (42) and (43) gives

g x 2y =  x  tan <p —

which is the equation of a parabola whose axis is vertical 
A  parabola, therefore, is the curve a projectile would de­
scribe in vacuo.

Since a parabola is symmetrical with respect to its axis, 
the ascending branch is similar in every respect to the de­
scending branch, the angle of fall being equal to the angle 
of projection ; and generally, for the same value of y, tan 3 
has numerically the same value, but with contrary signs, in 
both branches; being positive in the ascending branch, 
negative in the descending branch, and zero at the vertex.

If we make 3  =  — <p in (42) it becomes

X  =
2 u 1 ^-----tan a —

g
V* sin 2<p 

g
and this, for a given velocity, is evidently a maximum when
9 =  45°- _ <

Subtracting (42) from the above equation, and reducing, 
gives jg

X  — x  =  —----- (tan <p +  tan 3)2 tan <p x 7 1 J
also, dividing (43) by (42) gives

^(tan tan#)

y = —  (X  — x) tan <p 
whence

(45)
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Making # =  — <p in (41), we have 

T 2 U 2V .—  tan (o —  —  sin w
g  g

Subtracting (41) from this last equation gives

T — t =  —  (tan <p tan #)
§

also, (43) divided by (41) gives

-7 -=  - j  (tan ? +  tan 1?)
whence

y =  g± { T - t )

Dividing (44) by (42) gives( ? ) - ( * )  =
x  tan (p — tan &

Didion’s «, then, is the ratio of a parabolic arc wh
extremities have the same inclination as the arc of the 
jectory under consideration, to its horizontal projection.

E xp ression  for th e  V e lo city .— From (43) we h
since V  cos <p~v cos & =  U,

v3 sin1 $ =  F 3 sin1 <p — 2 gy.
Adding v1 cos1 1? to the first member, and its e

F 1 cos1 <p, to the second member, and reducing, we have
v2 =  F1 — 2 gy

If h is the vertical height through which the proje
must fall to acquire the velocity of projection (F), we 

have V‘ — 2gh
and this substituted in the above formula gives

P* =  2g {h— y)
that is, the velocity of the projectile at any point of
trajectory is that which it would acquire by falling thro
a vertical distance equal to h — y.

All the properties of the trajectory in vacuo may
easily and elegantly determined by means of the fu
mental equations (41) to (44) inclusive.
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C O N S T A N T  R E S IS T A N C E .

Suppose the resistance constant, and put —P _
w m then

the elimination of dt from (9) and (12) gives

whence

du d-d
—  =  m ---------5u cos if

log u =  m log tan (^ +  y )  + C.

Let v0 be the velocity when $ =  o, that is, at the summit 
of the trajectory ; then C =  log va, and we have

11 =  va tan’ (t  +  t ) (47)

Substituting this value of u in equations (21) to (24), and 
integrating so that t, x , y, and s shall all be zero at the 
origin, that is, when & — (p, we have, making the necessary 
reductions,

„  sin w — m sin $ — m
t — V  —f-1------ — v ----------- =

£■ (1 — m) g ( \ — m')
^ _ys cos <p (sin <p — 2in) __ 5 cos t? (sin d — 2ni)

~  g  (1 — 4m*) S i 1 — 4m*)
____ yz I -f- sin tp (sin <p — 2m) ^  1 -)- sin t? (sin $ — 2ni)

y ~  A g i1 — ™') V 4^ (i — «?)
_y , cos’ <p -(- 2m (sin <p — m) ^  cos3 $ -(- 2m (sin ■& — m)

Aing ( 1 — d?) 4mg  (1 — vP)
When 2m =  1, the differential expression for .*• becomes 

logarithmic, as do those for t, y, and s when m =  1. The 
integrations are easily obtained for these values of m, but 
are omitted on account of their length, and as being of no 
great practical importance. In the application of these for­
mulae it will be necessary, since the resistance of the air is 
not constant, but varies with the velocity, to determine a 
proper mean value for m between the limits of integration ; 
and this we may do as follows: After having computed the 
horizontal velocities ua and u$ by means of (33), corre­
sponding to the inclinations a and /?, the value of m may be 
determined by the following equation deduced from the 
above expression for u :
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________ log Ug. — log Up

81

lQg tan +  j )  -  log tan + 1 )

Example.— Compute the values of t, x, y, and s, from 
<p — 30° to & =  o, with the data given on page 67. We have

Bashforth gets, by dividing the arc into 8 parts, 
t =  io".4i3, x  =  6074 ft., andjr =  1882 ft.

It is easy to see how by suitable tables, the construction 
of which offers no difficulty, the time and co-ordinates ma)̂  
by this method be readily, and for arcs of limited extent 
accurately, computed. For example, we have

A being a function of m and <p, and A ' the same function of 
m and #.

R E S IS T A N C E  P R O P O R T IO N A L  T O  T H E  F IR S T  P O W E R  O F  T H E

D ifferen tia l E q uatio n s.— When n =  1, the differential 
equations (13), (17), (18), and (19) become respectively, since

v = gA ,

m _  log 751 +  log cos 30° —  log 525.91 _ 
log tan 60? ~

Substituting in the above formulae, we find

=  0.38673

t =  3-io73 +  7-4295 =  !o".537 
x  =  16908 —  10557 =  6351 ft.
y — 4446 --  2526 : 1920 ft.
* = 1 1 1 5 5  —  4 5 7 8  =  6 5 7 7  f t .

x  — A V' —  A 'i?

V E L O C I T Y .

nA
d& _ dii
. 1 O r ' '

g
dy = ----- tan ■& duOr
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Time and Co-ordinates.— The integration of the first 
three of these equations between the limits (<p, #) and (U., u) 
gives (supposing k constant)

tan tp —  tan d =  k  ----- (48)

, k 1 u  t =  — log —
_ g  u

or, using common logarithms,

t — M -  log —
g  «

(49)

in which M  =  2.30259; and

II
O'S

 I 1 (50)

Substituting for tan # in the expression for dy its value 
from (48), it becomes

, k ( k  \ , k' dud y = -------(-jz +  tan w I du 4 - — —
g \ U  r I  g  u

or

dy =  -)- tan <pjdx —  kdt

whence, supposing to vanish with x  and t,

y =  -{■  ta.n <p) x — kt (51)

Determination of k .— In the above integrations we 
have assumed k to be constant, whereas it varies with the 
velocity ; but our results will be correct if we give to k a 
proper mean of all its values between the limits of integra­
tion ; and as k varies slowly and with considerable regularity 
for all velocities for which this method will be used, we will 
take for k the value corresponding to the arithmetical mean 
of the two velocities at the extremities of the arc under 
consideration. It is evident that the smaller the arc of the 
trajectory over which we integrate, the less will be the 
error committed in taking this value for k. But it will be
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shown by examples that no material error will result for 
velocities less than about 1000 f. s., when the whole tra­
jectory is divided into two arcs with the point of division at 
the summit.

When n — \, we have

g_
k

whence from (6) and (7)

(1000)3
K i ?

—  Cm. (say)

The following table gives the values of m for velocities 
extending from 900 f. s. to 500 f. s., with first differences :

T A B L E  O F  m.

V m d, V in d,

500 32.814 668 710 23.700 346
510 32.146 618 720 23-354 357
520 31.528 572 730 22.997 340
530 30.956 554 740 22.657 323
540 30.402 539 750 22-334 335
550 29.863 527 760 21.999 376
560 29.336 490 770 21.623 388
570 28.846 427 780 21.235 372
580 28.419 392 790 20.863 358
590 28.027 387 800 20.505 344
600 27.640 384 810 20.161 384
610 27.256 38i 820 19.777 448
620 26.875 382 830 19.329 433
630 26.493 382 840 18.896 442
640 26.111 356 850 18.454 426
650 25-755 388 860 18.028 412
660 25.367 365 870 17.616 398
670 25.002 343 880 17.218 385
680 24.659 321 890 16.833 372
690
700

24-338
24.038

300338 900 16.461 359
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The value of k in the ascending- branch will be assumed 
to be that due to the velocity l  (V-\- v0); and in the descend­
ing branch, to £ {v0 -f- ve), vg being the velocity at the point of 
fall. The first step, then, is to compute v0 and ve; and this 
can readily be done by means of (33), as already explained.

E xpressions for th e  A scen d in g  and D escending 
B ran ch es.— It will be seen that x,y, and t are functions of 
U and u; and these latter depend upon <p and ■ &, as shown in 
equation (48).

From this equation we have
k - k Q k-T-, 4- tan (p = ---- b tan if =  —U ' T ue 1 u0

in which ua is the value of u at the summit; whence
k

u° =  ~k-----------
■jj +  tan tp (52)

and, since & is negative in the descending branch,
k-------------

----b tan 'O' . (53)

The following expressions for t, .r, and y  for the ascend­
ing and descending branches are easily deduced from (49), 
(50), and (51), in connection with (52) and (53):

A SC E N D IN G  B R A N C H . D ESCEN D IN G  B R A N C H .

- , ,  k ,  uta —  M —  log —  
g «0

81| ^
 

II ««)

k ,y« =  — X o  —  kta uQ
k  b t  }'b — „ x e *
VO

In using these formulas, u0 and ue are to be computed by 
means of (52) and (53).

The zero subscript is to be interpreted “ from the origin 
to the summit” ; and the theta subscript “ from the summit
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to a point in the descending branch where the inclination 
is

The method of computing a trajectory by these simple 
formula; will be best exhibited by examples, which we will 
select from those that have been worked out by other 
methods of recognized accuracy, or which have been tested 
by firing.

Example 1.— Calculate the trajectory with the data on 
page 67, viz. :

V = 7 $ ii.  s.; (p =  30° (whence U =  Vcos<p =  650.385); d =
2 2 d?

6.27 inches; w =  ?o lbs. (whence -^ =  —  =  1.12323).

Assuming — 370 to be the angle of fall, we will divide 
the trajectory into two arcs, the first extending from 30° to 
o°, and the second from o° to — 370. The velocities vQ and 
v ,slo are computed as follows :

From Table III. we take out (30°) =  0.60799, and (37°) =  
0.81977; and from Table I., I  (U) —  I  (650.385) =  0.93354. 
Then

2
— (30°) =  1.12323 X 0.60799 =  0.68291

: . / ( U) =  0-93354
I  (v0) =  1.61645 

(Table I.) va =  525.91

-^(37°) =  1-12323 X 0.81977 =  0.92079

I  (vo) =  1.61645

/(«-*•) =  2.53724 
»-«• =  434-25

=  434-25 s e c  3 70 =  543.74 f. s.

T h e  m ea n  v e lo c i t y  fro m  w h ic h  to  d e te r m in e  k in th e  
a s c e n d in g  b r a n c h  is  \ (751 -)- 525.91) =  638 f. s .;  w h e n c e  
m =  26.187. T h e  r e m a in in g  c a lc u la t io n s  m a y  b e  c o n v e ­
n ie n t ly  a r r a n g e d  a s  fo l lo w s :
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log m — 1.4180857 
log C — 0.2505630

’ log g  =  1.5077210 (g =  32-19)

' log k =  3-1763697 
log U =  2.8131705

log 2.3078 =  0.3631992 =  log j j  
[Equation (52)] tan <p =  0.5774

log 2.8852 =  0.4601759 (sub. from log 7)

• log «„ =  2.7161938
u0 — 520.228 
U =  650.385
log 130.157 =  2.1144675

log -  =  1.6686487
g -----------

lo g * 0=  3.7831162 
x0 =  6069 ft.

Bashforth gets by 8 steps, 6074
Difference, 5 ft.

log U =  2.8131705 
log u0 — 2.7161938

log 0.0969767 =  8.9866674
lo g M —  0.3622157 (add log — ) 

log ta~  1.0175318
to — Io".4I2

Bashforth"gets 10".4.13

Difference, o".ooi
log — =  1.0669224 (add log 7’) 

u0 — ■­
4.2432921 =  log 17510 

log 7^ =  4-1939015 =  log 15628
. fo =  !882

Bashforth gets 1882
Difference, o
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These results, being practically identical with those de­

duced with vastly greater labor by Prof. Bashforth, prove 
that when the law of resistance is that of the square of the 
velocity, as in this example, we may get quite as close an 
approximation to the true trajectory by assuming that the 
resistance is proportional to the first power of the velocity 
as we can upon the hypothesis of the law of the cube, and 
with a great gain in simplicity and labor.

We have next to compute the descending branch from 
& =  o° to & — —  370. The mean velocity from which to 
determine k in this branch is

i  (S25-9I +  543-74) =  534-8 f. s. 

whence m —  30.690.

log m —  1.4869969 
log C —  0.2505630 
log g =  1.5077210

log k =  3.2452809 
log v0 =  2.7209114

k
[Equation (53)] log 3.34480 =  0.5243695 =  log —

0̂
tan 37° =  0.75355

log 4.09835 =  0.6126090

log ^-31° == 2.6326719
o =  429.21 

V0 =  525.91
log 96.70 ' =  1.9854265 

, klog 7 =  1-7375599
o  _________

log =  3-7229864 
*-„• =  5284 ft.
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log v0 —  2.7209114 '
log 0 =  2.6326719

log 0.0882395 =  8.9456631 
log M  —  0.3622157

log + ,,.=  1.0454387 
+,» — 11 ".103

k
log —  *_37„ =  4-2473559 =  log 17675 

log k t_„. —  4.2907196 =  log 19531
y 1856ft. -

The projectile is still 1882 — 1856 =  26 ft. above the level 
of the gun =  Ay. If Ax and At are the corresponding addi­
tions to the range and time of flight, we shall have approxi- 
matel}r

AxAx 26 cot 370 =  35 ft.; and At = -----=  o".o8o.
^-37°

We therefore have .
X  =  6069 +  5284 -(-35=11388 ft.
T —  10.412 -f- 11.103 +0.080 =  21 .̂595

These values agree almost exactly with those deduced
by interpolation from the table on page 117 of Bashforth’s
work.

Example 2.— The 8-inch howitzer is fired with a quad­
rant elevation of 230. Muzzle velocity, 920 f. s .; weight of
shell, 180 lbs. ; diameter, 8 inches. Find the range and
time of flight. (Mackinlay’s “ Text-Book of Gunnery,”
page 107.)

Assuming the angle of fall to be — 270 54', we find bjT the
above method

X  — 7886 +  7108 — 13 =  14981 ft.
T  =  10.183 +  10.801 — 0.022 =  2o".962

Mackinlay gets, using Niven’s method,
X =  14787 ft., and 7'=2o".8i3 

He states that “ the published range-table gives 15000 ft.
as the range, and 21 "5 for the time of flight.”
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Example 3.— Let V =  298 m. =  977.71 ft., d =  13 c.m., 
w =  30 k.g., <p =  35° 21', a =  1.270 k.g., and <?, =  1.206 k g’. 
Find X  and T. (Krupp’s Bulletin, No. 55, December, 1884.)

For the Krupp projectiles and low velocities we will 
take for c the ratio of the coefficients of resistance deduced 
from the Krupp and Bashforth experiments respectively, 
and which are given in Chapter II. Let these coefficients 
be represented by A and A'. Then for velocities less than 
790 f. s. we have '

log A =  5.6698755 — 10 
log A ' =  5.7703827 — 10 

log c —  9.8994928 
. c =0.7934

To find C, expressed in English units, when w and d are 
given in kilogrammes and centimetres respectively, we have

£,_ IOOOO k W
144 c d ‘

in which k is the number of pounds in one kilogramme, and 
in the number of feet in one metre. Reducing, we have

C =  [1.2534887] Jr

As the initial velocity in this example is considerable, 
we will take into account the density of the air at the time 
the shots were fired, and also the diminution of density due 
to the altitude attained by the projectile; and for this pur­
pose we will assume the mean value of y  for the whole tra­
jectory to be 2000 ft.

The complete expression for C is (Chapter VII.),
r _W d, y_
k ““ t 2 € Aa o

from which we determine log C as follows: 
log w ■ = 1.4771213 

c log d2 =  7.6478175
constant log =  1.2534887 '

• log =  0.0813473
c log d =  9.8961963

y_
log e A =  0.0312468 
log 67=0.3872179 
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Assuming the angle of fall to be — 44° 40', and proceed
ing as in the first example, we find

X  ■ =. 10408 -(- 8736 +  104 =  19248 ft.
T —  15.088 -f- 16.324 -j- 0.221 =  3i,,.633 

Krupp gives the ranges of three shots fired with t
initial velocity and angle of departure of this example, a
the ranges reduced to the level of the mortar, as follows:

NO. OF SHOT. RANGE IN FEET.

18 19039
19 19265
20 19364

Mean of the three shots =  19223 ft. '
Computed— mean =  25 ft.

Example 4.— Given V =  206.6 m. =  677.834 ft., d =  
c.m., zv — 91 k.g., and <p — 6o°, to find X  and T. (Krup
Bulletin, No. 31, Dec. 30, 1881.)

It will be found that (assuming the angle of fall to 
—  63° 30', and taking no account of atmospheric condition

X  =  539°  +  4945 +  67 =  10402 ft.
T  =  17.016 +  17.543 +  0.250 =  34". 809

Krupp gives the observed ranges of five shots, with t
above data, as follows :

NO. OF SHOT. OBSERVED RANGE.

22 10332 ft .

23 HH O O

24 10384 “

25 10463 “

26 • 10440 “

Mean of the five shots =  10385 ft.
Computed— mean =  17 ft.

Example 5.— Given V =  204.1 m. =  669.63 ft., d =  21 c.
w =  91 k.g., and <p =  450, to find X  and T. (Krupp’s B
letin, No. 31, January 19, 1882.)

Assuming the angle of fall to be — 49°, we find as f
lows :

X —  6152 -(- 5678 +  56 =  11886 ft.
T  =  13.817 +  14.238+0.147 =  28,/.202 
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The following ranges were measured at Meppen:

NO. OF SHOT. OBSERVED RANGE.7172737475
11923 ft. 
11920 “ 
11841 “ 
11808 “ 
11749 “

Mean of the five shots =  11848 ft.
Computed— mean =  38 ft.

Example 6.— Compute X  and T  with the data of the pre. 
ceding example, except that <p =  30°.

Assuming the angle of fall to be — 330, we find as follows :

x  —  5473 +  5143 +  26 =  io647 ft.
T  =9.908 +  10.183 +  0.054 =  20". 145

Krupp gives as the mean of five measured ranges, 
X  =  10779 ft.

Computed—mean =  — 132 ft.

E xpression  for s .— If we make n —  2, that is, suppose 
the resistance of the air proportional to the square of the 
velocity, we shall have from (20)

whence, integrating and supposing s —  o when u = U , we 
have

which gives the length of any arc of a trajectory when the 
resistance is proportional to the square of the velocity, by 
means of the table of space functions.

We may also obtain another expression for s, better 
suited to our purpose, as follows:

E U L E R ’S M E T H O D .

C du

therefore (page 52)
j = C [ 5 (« )--S (C 0 ] (54)
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Since

( » ) = / -

we have, when 11 =  2,

d(3) - — 3 9
'  1 COS v

d3
C O S " 7?

d3 =  sec 3 d tan 3

and this substituted in (28) gives

k' d (3)ds =

in which
g (i) — (3)

(&) =  i  | tan # sec 7?+ log tan 0  +  j

whence, integrating between the limits <p and 3 , we have

, = Asi o g « - = i ^
g  g (0-(?)

or, if we use common logarithms,

, = ^ log(4L -_ a
g  (0 -  (?)

(55)

in which M —  2.30259.
E xpressions for go and y .— Equation (55) gives the 

value of s from the origin. If s' is the length of an arc of 
the trajectory from the origin to where the inclination is 3 ', 
and s" the length to some other point further on where the 
inclination is 3" (#'> 3"), we shall have from (55)

and

whence

s' =  M k-  lo g W - ^  
g  g (*) -  (?)

s - M  g  log (0 _ (?) 

s" — s' — As — M — log ~  ^  )
g  g  ( * )  -  ( { } ')

If 3" differs but little from 3 ' (say one degree), the cor­
responding values of Ax and Ay can be calculated with suffi-



E X T E R IO R  B A L L I S T I C S . 93

cient accuracy by multiplying As by cos £ (#'-)-#") for the 
former, and sin |  (•<?' +  &") for the latter; or,

j x — M y  log cos i  (A' +  &") —  M jA g  (say)

Ay =  .4/ kl  log sin i  (>r +  9") =  (sa>0
For the entire range we evidently have

X =  y Ax =  M  — 2' A; =  M - £
S g

the summation extending from & =  <p to 8 =  10, <a being the 
angle of fall.

To determine the value of to we have, since the sum of 
the positive increments o fg  in the ascending branch is equal 
(numerically) to the sum of the negative increments in the 
descending branch, .

' ^ K  =  o.
E xpression for th e  T im e.—For the time of flight we 

have, when Ax is small,
A AXAt — ---u

in which u is the mean horizontal velocity corresponding 
to Ax; but, from (15), when n =  2,

whence
U { ( * • ) - ( # ) } *
1

or, substituting for Ax its value given above,

j -: {(,•

If we put

Ad =  A; j ( * ) - ( # ) [
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we may have

log A0 =  log + i  log [ (0  -  C<?) ]
The two values of log [ (z) — id) ] corresponding to the 

extremities of the arc As, are

log [ (* ) - ( £ ') ] .  and log [ ( 0 - o n i
the first of which is too small and the second too great; 
whence, taking their arithmetical mean,

l o g  Ad= l o g  + i  l o g  [ ( o -  o n  ] + *  i ° g  c ( o  -  c m
by means of which 6 may be computed, and we then have

T — M -  6
£

Tables.— General Otto, of the Prussian Artillery, has 
published extensive tables* of the values of (<?), c, f, and 6 — 
the last three double entry tables with i and p for the argu­
ments— by means of which it is easy to solve many of the 
problems of high-angle fire. •

D eterm in atio n  o f  ft2.— General Otto, in the work 
above cited, gives the following method for determining £*: 
We have y

X = M —  f  
S

and

whence

T , = M t ^ 0 ‘
£

m x  e
g  T* &

an equation independent of Moreover f  and & are both 
independent of X  and T, being functions of the angle i and

£
the angle of projection tp; and their ratio may be tabu­

lated with these angles for arguments. General Otto has 
inserted such a table in his work calculated for angles of

* u Tafeln fur den Bombenwurf.”  Translated into French by RiefTel with the title u Tables 
Balistiques G^ndrales pour le tir £lev6.”  Paris, 1844.
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projection beginning at 30° and proceeding by intervals of 5° up to 75°. . . .

Now, suppose a certain projectile is fired with a known 
angle of projection <p, and its horizontal range X, and time 
of flight T, are carefully measured. With this data we

c o m p u t e b y  means of the above equation; and entering

Otto’s Table III. with the argument <p, find in the proper
- u

column the computed value of -̂2, and take out the corre­

sponding value of i. Next, with y and fas arguments, take
from Table II. the value of g, from which can be computed 
by the following formula, derived from the expression for X  
given above:

>6* = M  £

. b a s h f o r t h ’ s  m e t h o d .

For all values of n greater than unity the differential 
equations of motion take their simplest form when n —  3. 
For this reason Professor Bash forth assumes the cubic law 
of resistance throughout the whole extent of the trajectory, 
and employs variable coefficients to make the results con­
form to the actual resistance.

Making n =  3, equation (25) becomes

, k d tan #
dt = -------i------------ TT

g
in which

(■ <?) == tan d -[- J- tan" & ,

From (14) we have, when n —  3 and & ~ o ,

and this substituted in the above expression for dt gives, by 
a slight reduction,
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(itz= —  —0 d tan (?

i (3 tan /? +  tan3 (?)  ̂11

Introducing Bashforth’s coefficient K, making

E ‘L ( j P X = y
g  W  \ I O O O /

to correspond with his notation, and integrating between 
the limits (<p, (?) and (o, t), we have

d tan (?

y (3 tan d -f- tan3 (?) j- i
; V-TL 4, J e 

g  y

Operating in the same way upon (26) and (27), we obtain

and
y -

E P __7 . { *
vJi p __

d tan (?

— y (3 tan (? tan3 (?) t * 

tan (? d tan (?

__
y (3 tan (? -(- tan3 (?)

- — 2̂. <f> y e 
g Vy

Professor Bashforth has published extensive tables of the 
definite integrals and *F y9 for values of (? extending
from -f- 6o° to — 6o°, and of y- from o to ioo, calculated by­
quadratures; by means of which the principal elements of a 
trajectory may be accurately determined as follows:

As the coefficient of resistance K  generally varies with 
the velocity, the trajectory' must be divided into arcs of such 
limited extent that the value of K  for each arc may be con­
sidered constant; and it should be so taken as to give, as 
nearly as possible, its mean value for the arc under con­
sideration.

In the equation given on page 65, viz.:
/iooo\3 /1000V K  d2 ( . . . 3 1
( — ) =  h r )  +  7  -s 1 3 p ?  t

suppose U and tp to be the initial horizontal velocity and 
angle of projection respectively, and both known ; and let 
(?, also known, be the inclination of the forward extremity
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of the first arc into which the trajectory is divided. Now, 
assuming- a mean velocity for this arc, take out the corre­
sponding value of K  from the proper table and compute

( T ° ) ’ îen’ 'n *̂ ie same equation, changing <p to &, U be­

comes the horizontal velocity at the forward extremity ot 
the arc, which can also be computed.

Next compute y by means of the equation given above, 
with which and the known values of ip and & enter the 
tables and take out * J1®, *W®, and ^l7®; lastly, multiplying

u u 2the first by — , and each of the others by — , we have the

time of describing the first arc of the trajectory and the co­
ordinates of its forward extremity. By repeating the process 
with the second and following arcs into which the trajectory 
may be divided, the whole trajectory becomes known.

Professor Bashforth gives various other tables in his 
work, besides those we have mentioned, for facilitating the 
calculation of trajectories by his method, with examples of 
their application and full directions for their use.

Modification of liaslifortli’s Method for low Velo­
cities.— When the initial velocity.does not exceed 790 f. s. 
the law of resistance is that of the square of the velocity for 
the entire trajectory; and even when the initial velocity is 
as great as 1000 f. s. examples show that no material error 
results if we still retain the law of the square in our calcu­
lations; and this furnishes a very easy method for calcu­
lating trajectories for high angles of projection and for the 
initial velocities usually employed in high-angle fire, and 
which, it is believed, gives as accurate results as by any 
other method, and with less labor.

Making n = 2 , equation (25) becomes

dt k d tan &

in which

(#) =  \  { tan d sec # +  los tan 0  +  -7 )}
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We also have from (15), when « =  2, and # =  o,

(0 =  5 = 7  (s!,j)
and this substituted in the above expression for aft gives

d t=  — ^
d tan #

whence
_Z'* d tan #

V ,  ) ■ - > ' » (

_____ V0 ^ 0

I ~ 7  Y

In the same way we obtain from (26) and (27) the follow­
ing expressions for x  and y : .

tan d-

and

z/02 r *  d t
=  ~ d . - /(*) a 

tan f? of tan # 
1 — y (<?) S

1 y  0
1 V

It will be seen that this method depends upon tables of 
definite integrals which must be calculated by quadratures 
as in Bashforth's method, and with the same number of 
arguments; but the great advantage of these formulae over 
Bashforth’s is in the fact that y is constant for a given tra­
jectory, and, therefore, the labor of calculation is the same 
for all angles of projection.

To determine the value of k2 for oblong projectiles of 
the standard type we have

P  —
2 A ■

Taking the value of A derived from the Bashforth experi­
ments for velocities less than 790 f. s., and making g —  3 2 .16 ,

w e  f in d  »  =  [5 .4 3 5 9 0 3 3 ]  c
For the Krupp projectiles we should have, taking May- 

evski’s value of A,
**  =  [ 5 -5 3 6 7 5 6 4 ]  c

The numbers between brackets are the logarithms of the 
factors by which C is to be multiplied.
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For computing v0 we have from (32), when <? =  o.

I(v0) = -£ & )  + 1  {U) (56)

in which <p may be the inclination at any point in either 
branch, and V the corresponding horizontal velocity. The 
values of (<p) are given in Table III.

To show the practical working of this method, we will 
take the example from Bashforth already given (see 
page 67). The data are: V — 751 f. s .; tp =  30°; d = 6 .2 7 
inches, and w — yo lbs.; whence U —  650.385 f. s., and

70 . . .=  1.78059. Determine the range, time of flight,C —
(6.2 7)2

angle of fall, and terminal velocity.
First compute v0. We have from Table III.

(30°) =  0.60799
whence, from (56),

/(*o)= '

" 'i .78059 9 + 1  (65°-385) 0.68291 +  0.93354= 1.61645

therefore, from Table I.,

va =  525-9! f- s-
Computation of y :

log C =  0.2505630 
constant log =  5.4359033

log =  5.6864663 
log v? =  5.4418228
log 9.7553565 

y —  0.56932

As general tables of the definite integrals * J1®, *JT®, and 
have not yet been prepared, the following table has 

been calculated for this particular example, merely to illus­
trate the method : •
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y =  0.56932

9 T X Y

3 0 ° 0 . 6 3 6 7 6 0 . 7 0 4 8 6 0 . 2 1 7 7 5
2 4 • 4 7 8 3 8 • 5 1 4 9 3 • I 2 Q 3 9
18 • 3 4 1 6 9 • 3 5 9 6 5 . 0 6 0 4 5
12 . 2 1 9 4 4 . 2 2 6 6 2 . O 2 4 6 0

+  6 +  - 1 0 6 7 3 "j— . 1 0 8 3 8 +  - 0 0 5 7 5
0 .0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0

-  6 -  . 1 0 3 5 8 —  . 1 0 2 0 8 +  - 0 0 5 3 1
1 2 . 2 0 6 4 7 . 2 0 0 6 1 . 0 2 0 9 1

18 . 3 1 1 0 4 . 2 9 7 9 3 . 0 4 7 0 1

2 4 • 4 1 9 7 7 . 3 9 6 2 0 . 0 8 4 7 9

3 0 • 5 3 5 5 1 • 4 9 7 5 9 . 1 3 6 5 6

3 6 . 6 6 1 7 9 . 6 0 4 4 9 . 2 0 6 1 5

3 7 . 6 8 4 1 7 . 6 2 3 0 3 . 2 1 9 8 7

The value of 300 F° by the above table is 0.21775, and as 
this must be equal to °F“ we see at a glance that m lies 
between — 36° and — 370; and by interpolation we get 
10 =  —36°sT; and therefore °Z “ =  0.62025 and °7'“ 0.68081. 
Adding to these the numbers corresponding to the argument 
30°, we get =  1.32511, and * =  1.31757. Lastly,

<y 2 %}
multiplying the first of these by —  , and the second by — , we

<?" S
obtain

and
X  =  11396 ft. 

T — 21L546
which agree with Bashforth’s calculations.

The terminal velocity is found from (32), viz.:

/ ( * .) =  J h  +  /(*o)
and

We find
va — ua sec (o

and
' «. =  4347 f- s.

v *  =  543-2 f. s.
It will be seen that the inverse problem, namely, Given
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the terminal velocity and angle of fall, to determine the 
initial velocity, angle of projection, range, and time, can be 
solved by this method with the same ease and accuracy as 
the direct problem. We should first compute the summit 
velocity by the equation

/ K )  =  / ( * J - | :  H  (57)

and then all the other elements would be determined, as 
already explained.

In calculating trajectories by this method with the help 
of tables of the definite integrals * 7'®, etc., it will generally 
be necessary, as in Bashforth’s method, to interpolate with 
reference to y as well as #, and for this purpose the integrals 
must be tabulated for different values of y proceeding by 
constant differences, and including the highest and lowest 
values of y likely to be needed in practice, which are, ap­
proximately, i and 0.2.



CH APTER  VII.

T R A J E C T O R IE S  C O N T IN U E D — D IR E C T  F IR E .

N iven ’s M ethod.— If a is some mean value of sec d 
between the limits of integration ; that is, if we make

a =  sec # (say)
then equations (17) to (20) may be written as follows:

. C d (a u)
d, ~ ~ a  y n f

dx : (58)
C — d (a. 11)

“ a COS v  ~~r \n~-zA (a u f  1
C . -■  d {a u)

dy — — -T- sin i) 7---A {a u f 1
. C d (a 11]ds = ----- , . 'A (a u f

Making a 11 =  u', and integrating so that t, x, y, and s 
shall each be zero when u' =  U\ we have

f - c i  1 1 l
(n — 1) A ( u/n~l

C
cos if ■J 1 1 l

(n — 2) A ( u'”-2 — U’- a 1
_ C

sin if

S 1

i 1 1 ly 1 
1

( u'”-2

1 .1

U'«-z )

(11 — 2) A ( u'*-2 U'n-* )

Comparing these equations with those deduced in Chap­
ter IV. for rectilinear motion, it will be evident that we 
have as follows:

t =  C \ T ( u J -  T{U'f\ (59)
*  =  C cos & [S (u') -  S  (U'fj (60)
y — C sin if [5 (u') — S (£/' * =  x  tan if (61)

j = C [ . S  (zzA — A' (̂ /01 (62)
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The first three of these equations (or their equivalents) 

were first published by Mr. Niven in 1877, and in connection 
with equation (38), viz.:

D =  C cos 9 [D («') -  D (U')~] (63)
constitute what is known as “ Niven’s Method.”

If we use the /-function instead of the //function, equa­
tion (63) becomes

D =  cos & U  («0 -  1  ( U')-] (64)

or, better still, for direct fire (see Chapter V.),

D =   ̂J ' - sec tp [/ (u sec <p) — /(F)] (65)
in which

log 1.4570926"

The values of & adopted by Mr. Niven are as follows: 
For the //integral

— tan <p 4- tan # 
tan 0. = ----^ ------

For the X-, Y-, and /'-integrals
— — U —  u <p — &
# =  +  TT T ~~ -------1 ^  U +  u 3 

for the ascending branch, and
U — u d- — (p

■& =  th U -\-u
for the descending branch of the trajectory. For the 
method of deducing these expressions for &, see a paper by 
Professor J. M. Rice, U. S. Navy, in the eighth volume of 
“ Proceedings Naval Institute,” page 191.

We will now apply these formulas to the solution of a 
problem of direct fire; and, as we wish to compare the re­
sults obtained with those to be deduced from other methods 
we will use Table I. of this work instead of Niven’s tables, 
and we will also perform the calculations with more accu­
racy than is generally necessary in practice.
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Example of Niven s Method.— A  12-inch service projectile 
is fired at an angle of departure of io°, and an initial velocity 
of 1886 f. s. Find v, x, y, and t (a) when d =  o, and (b) 
when & =  — 130. ■

Here d =  12 in., w =  800 lbs., C =  <p= io°, V 1886
1 4 4  r

f. s., U =  1886 cos io° =  1857.33.
(a)#  =  o . -.Z> =  io°. We have first 

tan —  \ tan io° =  0.0831635
f?, =  5° 2' 18", and U  =  U sec —  1864.56 

Next compute u' by means of the equation

7 «> =  ^  ^  sec ^  + 7 (6/') 
or

I  (u') =  0.06308 -j- 0.03624 =  0.09932 
u' =  1328.96 =  ua sec

.*. «„= 1323.72 .

Next compute the value of & to be used with the X-, 
Y-, and 7’-integrals. We have

# =  50 2' 18" -f- 1857-33 ~  132372 1857-33 +  I323-72 X  j  =  5° 35' 5i"
The new values of IP and u' are, therefore,

IP =  1866.25, and u' =  1330.06 

From Table I. we find

■ S (67) =  2855.3 -S («0 =  5239.2
• 7X67) =  1.258 T{u')=  2.778

••-60 =  7 ^  { 2-7 7 8 -  1-258} =  8".444

x0 =  ^ c°s&  ̂ 5239-2 -  2855.3 } =  13180.7ft.

y0 — x  tan # =  1291.8 ft.
(b) # =  — 130. It will be necessary in this case to take 

a new origin at the summit of the trajectory, as there is no
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provision made in this method for calculating an arc of a 
trajectory lying partly in the ascending and partly in the 
descending branches. Indeed, since the differential ex­
pression for y contains sin & as a factor, which becomes zero 
at the summit and changes its sign in the descending branch, 
equation (61) does not hold true, unless the limits of integra­
tion (<p and $) are both positive or both negative.

We have, then, for this arc of the trajectory the follow­
ing data: ’

V =  U — 1323.72, <p =  o°, # =  — 130, and D =  130 
tan #, =  — £ tan 13 °=  — o.H5434i_ .-. =  — 6° 35' 5"

U '=  1332.51 / ( U') — 0.09860
/ (u') =  0.08222 4- 0.09860 =  0.18082 

. •. u' — 1064.39 =  ve cos # sec 
. •. ve =  1085.18, and ue =  1057.37

g =  -  6° 35' s' -  132372 ~  IOS7'37 X ^  =  -  6° 6-0­1323.72 +1057.37 3
The new values of V  and u' are, therefore,

IT —  1331.26, and u' =  1063.39.
From Table I. we get

S {U') =  5232.9 S (w') =  7011.7
T{IT) =  2.773 7> ')  =  4.282

• ‘ • t =  ^  { 4-282 -  2.773 J -- 8"-383

x  =  7 ^  cos  ̂ | 7OII-7 — 5232.9 | =  9826.3 ft. 

y — x  tan & — — 1050.1
The co-ordinates of the point of the trajectory whose in­

clination is— 130, taking the origin at the point of projec­
tion, are therefore

X =  \ t, i80.7 +  9826.3 =  23007.0 ft.
Y —  1291.8— 1050.1= 241.7 ft.

And the time,
T =  8.444 +  8.383 — 16". 827

For comparison we have computed the same elements 
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directly from equations (16), (25), (26), and (27), dividing the 
whole arc into three parts, with the points of division corre­
sponding to velocities of 1330 f. s. and 1120 f. s. respectively. 
The integrals for each arc were computed by quadratures, 
and the following are the final results:

^0=1081.55 f. s.; X =  23025-7 ft.; V =  243.14 ft., and
T =  16". 843.

The agreement between these two sets of values is re­
markably close, and shows that for the purpose of com­
puting co-ordinates of different points of a trajectory, 
Niven’s method is all that could be desired so far as ac­
curacy is concerned. For high angles of projection the 
trajectory should be divided into arcs not exceeding io° or 
15° each, and always with one point of division at the sum­
mit. ■

Example 2.— Given d =  12 in., w — 800 lbs., V —  1886 f. s., 
and <p — 30°. Compute the time and co-ordinates when 
& - 240.

Answer:
BY NIVEN’ S METHOD.

#,•== 27° 4' 29"
=  2 70 19' 4" 

Xq =  8482.O ft.
Pe =  4381.2 ft.
h =  5"-8S9 
ve - 1400.58 f. s.

BY QUADRATURES.

8481.4 ft. 4381.9 ft. 5".888
1400.4 f. s.

In the same manner, by successive steps, can the whole 
trajectory be computed. In practice it is never necessary 
to divide a trajectory into arcs of less than io°.

S laden ’s M ethod for L ow -A n gle  F ir in g .* — When 
the angle of projection is small, say not exceeding 30, the 
time corresponding to a given range can be computed with 
great accuracy by means of (29) and (30). We should first 
find v by means of the equation5 ^  =  ^ + 5 ( F )

* “  Principles of Gunnery,”  by Major J. Sladen, R .A ., London, 1879, Chapter VI.
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and then with this value of v compute T by means of (29). 
In the same manner we could find the value of i for a given 
value of x , less than X ; and these values of T and t substi­
tuted in (46), viz.,

y = £ l {T - t )

would give the value ofy corresponding to x ; since, under 
the conditions supposed, the vertical component of the velo­
city would be so small as to produce no appreciable resist­
ance to the projectile in that direction.

Example 1.— Required the following co ordinates of the 
trajectory described by a 500-grain bullet fired from a 
Springfield rifle, for a range of 600 ft., viz.: when xr=z 150 ft., 
300 ft., and 450 ft. respectively ; 8 — 524.29, 8t =  534.22.

Here d —  0.45 in., iv =  500 grains =  -fa lb., V =  1280 f. s., 
and X —  600 ft. VVe first find 5 (F) =  5509.70; 7'(F) =  2.985; 
and

C-. 14 X 534-22 _
(o-45)3 X 524-29

0.35942

The principal steps of the remaining calculations are 
given in the following table :

X
( f t . )

X
c s t v ) V

( f .  s.) t y
(inches.)

y '
(inches.)

yo
(inches.)

150 417.34 5727.04 1209.72 0". 12055 9-365 9.406 7.950

300 834.69 6344.39 1146.76 o*. 24814 13.167 12.987 10.600

450 1252.03 6761.73 1091.31 O" . 3 8 2 3 5 10.386 9.956 7.950

600 1669.38 7179.08 1046.55 O”. 52313 
(:T )

0.000 0.000 0.000

The sixth column gives the computed values o fj,  and the 
seventh the mean of five trajectories measured with great 
care at Creedmoor by Mr. H. G. Sinclair, in charge of the 
“ Forest and Stream Trajectory Test.” The last column 
gives the corresponding values of y in vacuo, computed by (45)-
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S IA C C I S M E T H O D  F O R  D IR E C T  F IR E . 

E xpression for y .— We have from (35), since tan <? =
dy
dx

or

dy 
dx

2 j dy

We also have from (58)
a du'

~Cdx ~  ~  A
whence multiplying the last two equations together, mem­
ber by member,

\ dy -  tan <p dx  ̂ - ~ ^ I { U ) d x =  J  J/w_--

Integrating and making ;r and both zero at the origin, 
where u' =  U ', we have

j . ) « r , rm I f* 'I { u ')d u '

Making for convenience

(in which the A ’s must not be confounded) the above equa­
tion becomes

^  {y — *  tan <p | -  I  (*/') *  =  -  j A («') -  ^ (£/') | 

From (60) we have

^ x  =  S (u ')~  S(U ') ■

whence, by division,
2 j y . \ . . . . .  A { u ') - A { U ')

Z c  17 - t an f  [ -  ^  > =  -  S ( J )  -  s  ( W
or

■ y_tan c r/rm.*■  tan <p 2 { 5  zy) _  ^ / t/o / (C/) (66)
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C alcu lation  o f th e  A -Fun ction .— We have (Chap­
ter V.)

■ / M = ^ + e  '
and therefore •

4 g r  du> q r  du' r ,

_  g , <2
• + ,h (11 — 1) A 2 iu'*n-l) ^ (n — 2)A u'n- 

which becomes, when n =  2,

Q

A («') 2 A 3 un A-  ^ -Ib g u '+ Q '

The constants Q, corresponding to the five different ex­
pressions for the resistance, are given in Chapter V., and 
the values of Q  are to be determined as explained in Chapter 
IV. Making the necessary substitutions, and using A {v) as 
the general functional symbol, we have for standard oblong 
projectiles the following expressions for calculating the A- 
functions:

2800 f. s. >  v > 1330 f. s .:

A (v) =  [8 9012292] +  [2.6701589] log v -  I7H-5S

1330 f. s. >  v >  1120 f. s.:

A {v) =  [14.6562945] +  [5.1480576] * -  53.13
V  V

1120 f. s. > v >  990 f. s.:

A (v) =  [32.2571789] ^  +  [14.4412953] +  126.68

990 f. s. >  v >  790 f. s.:

A (v) =  [14.9781903] J-4 —  [5.9124902] * +  449.89 

790 f. s. >  v >  100 f. s.:

A (v) =  [9.6655206] Jr +  [4.1438598] log v -  45916.40

The values of A (v) calculated by the above formulae are 
given in Table I.
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Equation (66), together with (35), (59), and (60), are the 
fundamental equations of “ Siacci’s method.” This method, 
by Major F. Siacci, of the Italian Artillery, was published 
in the Revue d'Artillerie for October, 1880. A  translation 
of this paper by Lieutenant O. B. Mitcham, Ordnance De­
partment, U. S. A., was printed in the report of the Chief 
of Ordnance for 1881. Lieutenant Mitcham added to his 
translation a ballistic table adapted to English units, and 
based upon the coefficients of resistance deduced by Gene­
ral Mayevski from the Russian and English experiments 
noticed in Chapter II. In this table he gives for the first 
time the values of T{v).

We will, for convenience, collect thesd equations to­
gether and renumber them:

They are:

tan <p — tan # =  j / (;/) —  / (U') j (67)

X -
C_
a |s(« 0

— =  tan <px 1
t C\T  («')

a C \ A  (u ') -A (U ’)j A («/) — 
1 5  («') —  

-  T(U')]
=  av cos d

- I ( U ')

(68)

(69)

(70)

(71)
As the origin of co-ordinates is at the point of departure, 

y  is zero at the origin and also at the point in the descend­
ing branch where the trajectory pierces the horizontal plane 
passing through the muzzle of the gun. Calling the velo­
city at this point vM, we shall have, making — d =  a>,

u’a, =  a v „ cos <«
From (69) we have 

a Ctan w = ---r 2
and from (67)

\ A ( u '„ ) - A  (U') 
1 5  («'.) -  S(U')

tan < p = -j-  {/(«'„) -/(£ /')

(72)

(73)

(74)
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Eliminating tan <p from these last two equations gives

tan w
a C ( 

=  _2~ 1
/ ( « ' . ) -

A (#'„) -  A (U')\ 
S (u 'm) -  S(U ') J

From (68) and (70) we have

and

(75)

(76)

T =  C [T (u '„)— T(U ’)] (77)
By means of equations (67) to (77) all problems of ex­

terior ballistics in the plane of fire may be solved. If we 
wish to compute the co-ordinates of the extremities of any 

' arc of a trajectory having the inclinations <p and #, we should 
make use of equations (67) to (71). If the object is to deter­
mine the elements of a complete trajectory lying above the 
horizontal plane passing through the muzzle of the gun, at 
one operation, we should employ equations (72) to (77). We 
will give an example of each, using Didion’s value of a.

Example 1.— Given V —  1886 f. s .; d —  12 in.; w =  8oo 
lbs., <p =  io°, and # = — 130; to find ve, xe> ye, and te. (See 
example 1, Niven’s method.)

We have first

Next

( i o ° )  +  ( i 3 q)

tan io° +  tan 130 1.007231

U' =  1886 a cos io° =  1870.78 
From Table I., -
£(£0=2838.3; yJ(&0=44.o6; I(W )=o.03581; T{U') =  1.250

From (67) we have

/(«'«) =  ^  | tan io° +  tan 130 | +  I  (If)

=  0.14554 +  0.03581 =0.18135 
.• .« '=  1063.42 ; S(u')=- 7011.4; A (m/) =  440.44; 1 (ul) =4.282. 
These values substituted in (68), (69), and (70) give

xe =  23017 ft. 
y9 —  248.06 ft. 
te =  16". 844



I 12 EXTERIOR BALLISTICS.

From (71) we have

V e : a cos &To =  IO83.6 f. S.

These results are quite as accurate as those deduced by 
Niven’s method by two steps.

Example 2.— Required the horizontal range, time of 
flight, and striking velocity, with the data ot Example 1.

In computing a we will assume an angle of fall of — 140 30', 
which gives

a —  1.008645 
.-. V  =  1873.40

S{U')=2%2?>.$- A (C/')=43.71; I(U')=o.o3563; T{U')=  L243. 
From (73) we have

A (u'a) — 43.71 
S  (z/„) — 2828.5

=  tan p -f- /(£/') =  0.09856

from which to calculate u'm. As the relation between the 
A-function and ^-function does not admit of a direct solu­
tion of this equation, it will be necessary to determine the 
value of u'm by successive approximations; and for this pur­
pose the rule of “ Double Position ” is well adapted. This 
rule is deduced as follows : Let zz, and zq be two near values 
of u (or the quantity to be determined), one greater and the 
other less ; and q and q the errors respectively, when zq and 
zq are substituted for u in the equation to be solved. Then, 
upon the hypothesis that the errors in the results are pro­
portional to the errors in the assumed data, we have

el : q :: u — zq : u — zq 
whence, by division,

or
e .— eE-: q :: zq — zq : u — u)

€x t’ 2̂ ’ : zq — zq : u —
from which is derived the following rule: As the difference 
of the errors is to the difference of the assumed numbers, so 
is the lesser of the two errors (numerically) to the correc­
tion to be applied to the corresponding assumed number.
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If ux and u, are selected with judgment, the resulting 

value of u will generally be sufficiently correct by a single 
application of the rule, or, at most, by two trials.

In our example assume zq =  1050, for a first trial; whence 
S' (1050) =  7143.7, and A (1050) =464.94; and these in the 
above equation give

464.94-43.71 
7143.7 — 2828.5 =  0.09762

If we had taken for zq the correct value of u'a, the second 
member would have been 0.09856, and hence ^ =  — 0.00094. 
Whenever ex is negative the assumed value of u’«, is too 
great; we will, therefore, next suppose zz2 =  1040, and pro­
ceeding in the same way we find c, = -|-0.00128. The cor­
rect value of u'u is, then, between 1050 ft. and 1040 ft. Ap­
plying the rule, we have the following proportion :

222 ; 10 94 : 4.23

consequently u'̂  =  1050 — 4.23= 1045.77 f- s .: and this satis­
fies the above equation.
We next find 1

S{tt'm)= 7 187.1; A (zz,u,)=473.2o; I{u'a)—o.\gi^-, H "'*)= 444-8 
We now have from (75)

tan 10 =  | 0.19154 — 0.09856 | =  0.26051

.-.«»=  140 36'. (By Table III.)
From (76) and (77)

X  =  | 7187.1 — 2828.5 i =24007 ft.

T =  C[ 4.448 — 1.243] =  i7'.8o6
From (72)

ll'„ r
: - ------ w  =  1071.4 f- S.a cos

Various other problems may be solved by a suitable com­
bination of equations (67) to (71). Indeed, if a velocity,
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either initial or terminal, and one other element be given, 
all the other elements may be computed, though in certain 
cases this can only be accomplished by successive approxi­
mations. Most of these problems, for direct fire, will be 
solved further on. •

A p p lica tio n  o f S iacci’s E quations to  M ortar- 
F irin g-.— For low velocities, such as are used in mortar­
firing, we may take for a in all cases the following value :

a =  M -tan <p
This simplifies the calculations, and gives results sufficiently 
accurate for most practical purposes, as the following ex­
amples will show :

Example 1.— Given F = 7 5 i f. s.;  ̂=  30°; and log C =  
0.25056. Required X, T, 10, and v„. (See Example 1, Chap­
ter VI.)

We have, Table III., (y>) =  0.60799.

log {f) =  9.78390
log tan <p =  9.76144

log a —  0.02246 
log V  =  2.87564 

log cos =  9.93753'

log U' —  2.83563 U' =  684.90

S (U ') =  13681.1; A (U') =  344443 5 W )  =  0.80679; T(U') =  
12.274.

log 2 =  0.30103 [Equation (73)] 
c. log a —  9-97754

‘ c. log C =  9.74944 (add log tan <P)
log 0.61581 =9.78945 

1 (U') =  0.80679

1.42260̂

. A (ufi) — 344443 
' ' 5  (u'a) —  13681.1

1.42260
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By double position we find from this equation 

u'a =  459.78

. ■ . S (?/„) =  20443.1 I I  («'») =  2.22481 ; T («'„) =  24.404 

x = ~; | 20443-1 — 13681.1 | = H 434 ft.

T  =  C [24.404 — 12.274] =  21 ".60 
a C

tan id : : | 2.22481 —  I.42260 | .

■ ■ ■ 10 =  36° 57'

546.3 f .  S .a cos co

[Eq. (75)]

[Eq. (72)]

Example 2.— Given V =  977.71 f. s., 50=35° 21', and 
log <7=0.38722. Required X, T, to, and va. (See Example 
3, Chapter VL)

Answer:
X  =  19328 ft.
T =  3 1 ' . 6 3  

=517.63 
m =  44° 44'

va =  675.65 f. s. 1

Example 3.— Given V  =  609.63 f. s .; tp =  45°, and log C =  
0.56809; required X, T, w, and (See Example 5, Chap­
ter VI.)

Answer:
X  =  11984 ft.
T  28"-30 

*'<4 =  436.52 ‘
w =  49° 1 o' 

va =  581.64

S ia cc i’s E quations for D ire c t F ire .— As already 
stated, a is some mean value of the secants of the inclina­
tions of the extremities of the arc of the trajectory over 
which we integrate; and consequently if we take the whole
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trajectory lying above the level of the gun, a will be greater 
than i and less than sec to. To illustrate, suppose we have for 
our data a given projectile fired with a certain known initial 
velocity and angle of projection, and we wish to calculate 
the angle of fall, terminal velocity, range, and time of flight. 
If we calculate these elements by means of (75), (72), (76), 
and (77), making a =  1, they will be too great; while if a is 
made equal to sec to, or even sec f ,  they will be too small; 
and the correct value of each element would be found by 
giving to a some value intermediate to the two. Moreover, 
the value of a which would give the exact range would not 
give the exact time of flight or terminal velocity. These 
principles are further illustrated by the following numerical 
results, calculated from the data, 1404 b s .; ^ = io ° ;  
w =  183 lbs., and d =  8 in.:

As the true values of these elements lie between those 
we have computed, it will be seen that either set of values 
is correct enough for most purposes. It is, therefore, ap­
parent that in direct fire we may give to a that value which 
shall reduce the above equations to their simplest forms, pro­
vided it lies between the limits « =  1 and a —  sec tp.

As we have already seen (Chapter V.), Major Siacci 
gives to a the value

by means of which equation (37) was obtained, viz.:

a  =  sec tp

X =  13752 ft.
=  892.2 f. s. 

(»= — 13° I7/ 
T =  i3'.04

X  =  13622 ft. 
va —  881.4 f. s. 
w =  — 130 23' 
T =  12". 5 5

a =  (sec <p) «-i

tan # =  tan w ,7 cos tp | / ( O  _/(*/)} (78)

cos ■& 
cos tp

in which
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Making the same substitution in (68), (69), and (70), they 
become respectively

*  =  C [ S « ) - S ( F ) ]  (79)
y  C \ A ( u ' ) - A ( V )  r n ^ {  fQ .
x - ^ n(P 2 c o s > l  S { u ' ) - S ( V )  (-8°̂

t =  —  j T { u ' ) - T ( V )
CO S f  '

When (p and # are so small that the ratio of their cosines 
does not differ much from unity, we may put

u ' —  V

and the above equations become
c

tan # =  tan <p —

(81)

h ( v ) - 7 (V)\2 cos <p ( 
x = C [ S ( v ) -  S(V)]
■ r - t ^ng C  ' [ A ( v )  — A  (F) 
X  ~  ^  2 c o s ’1 p  j  S  (w ) -  5 ( F )

C | T ( y ) - T { V ) \

(82)

(83)

/(F ) | (84)

.........................   (85)
COS f  ( )

We shall retain this form of the ballistic equations in 
what follows, though when very accurate results are de­
sired we must use u' instead of v.

Whenjr =  o, we have from (84)

1. l86)
Substituting for tan <p in (84) its value from (82), and re­

ducing, we have, when y =  o,
, v A ( v ) - A ( V )  I2cos y t a n , ^ 6 - j / ^ ) - 6. w _ ^ (F )}

For small angles of projection we may put

2 cos2 <p tan to 

and, therefore,

. cos <p .
2  sin to cos t o ------ -̂L —  sin 2to

CO S (O

(87)
. A ( v ) - A ( V ) \sin 2 *  =  C

For the larger angles of projection employed in direct



118 EXTERIOR BALLISTICS.

fire, if accurate results are desired, we must determine to by 
the equation

c  j/ ( t O - / ( * o }tan m =  tan cp —
2 cos <p

using u' instead of v, as already explained.
P ra c tic a l A p p lication s.— We will now apply Siacci’s 

equations to the solution of some of the most important 
problems of direct fire.

Problem i .— Given the initial velocity and angle of pro­
jection, to determine the range, time of flight, angle of fall, and 
terminal velocity.

We have [equation (86)]
A(v) — A  (V )  _  sin 2cp 
S (v )--S (V )  C ^  V j 

from which to calculate v by “ Double Position,” as already 
explained. Having found v, the remaining elements are 
computed by the equations

X = C \ _ S ( v ) - S { V ) }

T —  — —  \ 7» -  T(V)\

sin 2co

cos tp

For curved fire we may proceed as fullows: We have, 
from the origin to the summit,

c  !/„ =  ■cos <p l T ( Vo) - T ( V ) \

Now, if we assume that the time from the point of pro­
jection to the summit is one-half the time o f flight, we shall 
have, from the above expressions for 7' and t0,

T (v) =  2 T(va) ~  T(V)
which gives v by means of the T'-functions, va being computed 
bv the equation

' / ( .0) =  ^  +  /(F)
derived from (82).

Example 1.— The 8-inch rifle (converted) fires an ogival-
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headed shot weighing 183 lbs. If the angle of projection 
is io°, and the initial velocity 1404 f. s., find the range, time 
of flight, angle of fall, and terminal velocity.

We have V =  1404 f. s. ; <p =  io°; w =  183 lbs.; d — 8 
inches, whence log C =  0.45627 : to find X, T, 00, and v.

From Table I. we find5  (V) =  4878.6— 0.8 X 25.1 =4858.5 
A (F) —  163.96 — 0.8 X 2.16 =  162.23 
I  (V) =  0.08661 — 0.8 X 0.00082 =  0.08599 
T(V)  =  2.514 — 0.8 X 0.018 =  2.500.

Next compute v,:
log sin 2  ̂=  9.53405 

log C =  0.45627

log o. 11961 =  9.07778 
/ (V) =  0.08599

0.20560

• A ^ - A ^ - o 2oS6o■ ■ S{v)~ S ( V ) - ° - 20S°0
The value of v satisfying this equation is found to be 

v =  873.8 ft., whence
S  (v) =  9641.8 A (v'u) =  1145-65
/(v) =  0.36668 T(v'01) =  y. 030

X, Ty 10, and v are now computed as follows : 
log C =  0.45627 

log [5 (v) -  S  ( V) ] =  3-67973
• lo g  X  =  4.13600'

X =  13677 ft- =4559 y6s. 
lo g [ 7» ' -  T(V)]  = 0 .6 5 6 1 0  

log sec <p =  0.00665

log I(v)

log T =  1.11902 
13". 153

A ( v) - A ( V ) )
S ( v ) -  S(V)  S -  9-20704

log sin 2(o =  9.66331
2(0 =  27°25/30,/

(o =  i 3° 42, 45"
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Tlie value of w computed by the more exact formula
Ctan (o

is
l , M  - r f M - '< ( O l  r ( s ) “  i ( » ) - i ( r ) t2  C O S

«j =  13° 21/ 30" 
differing by 21' from the less approximate value. 

We have found above .
v =  873.8 f. s.

but this is only an approximation. To determine its true 
value, that is, its true value so far as the formulae are concerned, 
we should have

873.8
cos 10

C O S  13 21 30'7, =  884.45 f. S.

differing from the approximate value by about 10 feet.
Example 2.— “ A 6-inch projectile leaves the gun at an 

angle of departure of 40, with an initial velocity of 2100 f. s .; 
70=64 lbs., d =  6 inches. Find the range in horizontal plane 
through the muzzle of the gun, and time of flight.” (“ Ex­
terior Ballistics,” by Lieutenants Meigs and Ihgersoll, 
U.S.N.)

We have (Table I.)
S(V)  =  2024.8; A ( V ) = 20.57; /(F) =  0.02246; 7’(F) =  o.838 

Taking c =  1, we have

Next we have 3̂

A (v) — 20.57 36 . 00 . ......
ctV ----  ' 4  =  jr  sin 8 +  l  ( V) =  o. 10074S  (v) — 2024.8 64 x ‘

from which equation we readily find
v —  993-77 f- s.

S (v) =  7801.8, and T (v) =  5.051 
X =  C [7801.8 — 2024.8] =  10270 ft.

^ ^ l 5'05' - 0-838 ^ 7'-5'
PROBLEM 2.— Given the angle of fa ll and terminal velocity, to 

determine the initial velocity, angle of projection, range, and time 
of flight-
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We have [equation (87)]
A (v) — A (V) _ . N sin 2co .
S(v) - 5 (F) C ~

from which to calculate F b y double position.
We may also determine F  by the equation (see Prob­

lem 1)
T(V)  =  2 T{v0) -  T (v) 

v0 being found by the equation
sin 2(0I  (va) =  I  (v)------ -c—

derived from (82).
Having found F  by either method, <p, X, and T  are com­

puted by the equations

C ) A ( v ) - A ( V )  l
( S(v)— S(V)  { } i

C [ S ( v ) - S ( V ) ]

C ‘ T(v) —  T(V)

sin 2<p

X ­

T-- cos <p
Example 1.— Given ^ = 4.5 inches; w—  35 lbs.; 01=15°, 

and v —  772.74 f. s.; to determine <p, X, and T.
It will be found that we have the following equation from 

which to find V:
2058.17 —  A (If)
11633.6 — 5 (F) 0.26807

For the first trial assume F =  1500, and, substituting in 
the first member of the above equation, it reduces it to 
0.26691, which is too small by 0.00116 =  .̂ Next make 
V =  1480, and we shall find that the first member now be­
comes too great by 0.00140 =  et; then

256 : 20 : : 116 : 9.1 '
The correct value of V is therefore 1500 —  9.1 =  1490.9 f. s., 
from which are easily found

(p— g° 51'; X =  12440 ft.; T =  12".72.
Example 2.— “ In attacking a place with curved fire it 

was required to drop shell into the place with an angle of



122 EXTERIOR BALLISTICS.

descent of 120, and terminal velocity of 600 f. s., using the 
8-inch howitzer and a projectile of 180 lbs.; find the requi­
site position of the battery, and the requisite elevation and 
charge of powder.” *

Here d —  8 inches; w —  180 lbs.; v =  600 f. s., and 
m —  120; to find X, V, and <p. We have

log sin 2co — 9.60931 
log C =  0.44909

log 0.14462 - 9.16022 
7 ^  =  lA $929
I  (va) =  1.01467 v0 =  630.85 f. s. 

whence we find

T(V) =  2 X 14-396— 15-779 =  i 3-°12 
V — 665.1 f. s.

5  (v) =  15926.6 5  (V) =  14178.9
log 1747.7 =  3.24247 

log X  =  3.69156
. X  =  4915 ft. =  1638 yds.

/ ( O  =  1.01467 
I  (V) =  0.87708

log 0-13759 - 9-I3859 
log sin 2<p =  9.58768 

2<p — 22° 46' f  =  I 1° 23'
P r o b l e m  3.— Given the range and initial velocity, to deter­

mine the other elements of the trajectory.
This is by far the most important of the ballistic prob­

lems, and it happens, fortunately, to be one of those most 
easily solved by Siacci’s formulae.

For the terminal velocity we have

<>» =  S (F )  +  ^

* Prof. A . G. Greenhill in “  Proceedings Royal A rtillery Institution,”  No. 2, vol. xiii. page 79.
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and then, with V and v known, all the other elements can be 
computed by formula: already considered.

Example 1.— Find the elevation required for a range of 
2000 yards with the 16-pdr. M. L. R. gun, the muzzle velo­
city being 1355 f. s .; find also the time of flight and angle 
of descent.

Here d — 3.6; w =  16; log C =  0.09152 ; F =  1355, and 
X  =  6000.

Answer: <p =  40 41'
T  =  5"-9i 
<a =  6° 13'

Example 2.— Compute a range table for the %-inch rifle (con­
verted), up to 15000 ft.

We have for chilled shot, w — 183 lbs.; d — 8 in. (whence 
log C — 0.45627), and V =  1404 f. s. First take from Table 
I. the following numbers, which are to be used in all the 
calculations:5  ( ^  =  4858.5, A ( V ) =  162.23, /(F) =  0.08595, T(V) — 2.500

The remainder of the work may be concisely tabulated 
as follows:

A'
ft.

X
c sw 'V A  (») /(») T(v)

1500 524.59 5383-1 1303.0 212.04 O .10442 2 884
3000 1049.2 5907.7 1212.8 272.28 .12579 3 305
4500 1573-3 6432.3 U 34-3 344.60 .15038 3 753
6000 2098.4 6956.9 1 69.2 430.79 . I7826 4 230
7500 2622.9 7481.4 1019.2 532.14 .20929 4 732
9000 3H7-5 8006.0 978.8 65O.68 .24314 5 257

10500 3672.1 8530.6 942.5 787.72 •27973 5 804
12000 4196.7 9055-2 908.8 944-68 •3I9H 6 37i
13500 4721-3 9579.8 877-4 I 123.07 .36148 6 959
15000 5245-9 10104.4 848.1 1324.47 .40684 7 567

The numbers in the first column are the ranges for which 
the elements of the trajectory are to be computed. The 
numbers in the second column are simple multiples of the 
first number in the column. Adding 5 (V) to the numbers
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in the second column gives those in the third column, and 
with these we take from Table 1. the values of v, and at the 
same time those of A (v), I  (v), and T (v).

The time of flight, angle of departure, and angle of fall 
are then computed by the following formulas:

and

•T : C

sin 2 f — C

tan rjT —

C O S  <f> ]
A (v)

T(v) - T { V )  j 

A (V) - I { V )S { v ) - S ( V )

I U  S ( v ) - S ( V ) \2 C O S  <p
Lastly, the values of v, tabulated above, are to be multi­

plied by cos <p sec a> to obtain the correct striking velocities. 
In our example the results are as follows:

X
yds <0 V

f . ».
T

500

0 
1

O o ° 47/ 1303 l " .I O
1000 i ° 33' i ° 43' 1213 2".3°
1500 2° 2 7 ' 2° 50' 1135 3"-S9
2000 3° 27' 4° 08' 1070 4".96
2500 4° 32' 5° 38' 1021 6".40
3000 5° 43' 70 14' 982 7" -92
3500 6° $9' 90 oi' 947 9". 5 2
4000 8° 21' io° 58' 916 11". 19
4500 9° 49' 13° 06' 888 I2".94
5000 110 24' 150 25' 862 i4".78

By interpolation, using first and second differences, the 
interval between successive values of the argument (X) may 
be reduced from 500 yards to 100 yards.

Example 3.— Given d. =  20 93 cm.; w =  140 kg.; F =  521 
m. s .; d, — 1.206; o — 1.233; X — /yogy m.; angle of jump =  8'; 
required the angle of elevation — <p — 8', the angle of fall, 
the striking velocity, and the time of flight.*

Making the ballistic coefficient (r) =  0.907, we have for

* Ballistische Formcln-von M ayevski nach Siacci. Fiir Elevationen unter 15 Grad,”  Essen, 
Fried. Krupp'sche Buchdruckerei, 1883, page 22. Also quoted by Siacci in “  Rivista di Artiglieria 
e Genio,”  vol. ii. page 414, who solves the example, using M ayevski’s table.
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computing C in English units, when d is expressed in centi­
metres and zv in kilogrammes, the following expression :

C =  [1.1953743] y  J

The following are the results obtained by experiment, 
by Mayevski’s calculations, by Siacci’s calculations, and by 
Table I. of this work:

T A n g le  o f E le v a tio n . A n g le  o f F a l l . S tr ik in g  V e lo c ity , f .  s.
By experiment 9"-7 5° 3o'

Mayevski... g " .6 5° 32' 70 16' 1176
Siacci........ 9"-67 5 5° 3i'
Table I ...... g " .6 6 50 29' 30" 70 17' 1169

Example 4.— Given d —  24 cm.; 70 =  215 kg.; V =  $2g 
m. s. =  1735.6 f. s .; required the angle of departure for each 
of the horizontal ranges contained in the first column of the 
following table:

H o rizo n ta lR a n g e .
in

S ,
8

C o m p u te d  by T a b le  I . O bserv ed  v a lu e  o f V a lu e s  o f  <6 <
M a y e v s k i’ sT a b le .

com puted b y
H o je l ’sT a b le .

2026 0.9569 2° 17' 20 i g ' 2° 18' 2° 14'
3000 0.9407 3° 36' 3° 4 i' 3° 37' 3° 35'
4000 0.9756 5° 5' 5° io' 5° & 5° S'
5964 0.9560 8° 41' 8° 35/ 8° 44' 8° 44'
7600 0.9461 120 31' 120 5' 12° 31' 12° 32'

The data in the first, second, and fourth columns are 
taken from Krupp’s Bulletin, No. 56 (February, 1885), page
4. The values of <p in the third column were computed by 
Siacci’s method, using Table I. of this work. In the last 
two columns are given the values of (p computed by Siacci’s 
method with Mayevski’s and Hojel’s tables respectively.

Problem 4.—  With a given initial velocity, required the angle 
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of projection necessary to cause a proj'ectile to pass through a 
given point.

Let x  and y be the co-ordinates of the given point. Then 
from (83) and (84) we have

S{v) = § +  S(F )
and

tan <p — y C l A ( v ) - A ( V ) - / ( F )x  2 cos2 <p l S {v) — 5  (F)
Example.— An 8-inch service projectile is fired with an 

initial velocity of 1404 f. s. from a point 33 feet above the 
water; find the necessary angle of projection to attain a 
range on the water of 3000 yards.
Here d —  8, w =  180, F =  1404, jr =  9000 ft., and y =  — 33 ft. 

We have ^

S ^  =  1 ^  X 9000 +  48S8‘5 =  80S8’5 
' . v —  g7$.c>7

In calculating tan <p we will, at first, omit the factor cos2 tp
in the second member.

33 . 180 ( 663.56 — 162.23 „. •. tan <p=---- —  -I---- - ( — ------- a _  0.08595Y 9000 ^  128 ( 8058.5 — 4858.5 Y
—  — 0.00367 -f- 0.09945 =  0.09578 

Therefore the approximate value of <p is 5° 28'. Complet­
ing the calculation by introducing cos2 <p we have

fP =  5° 3i'
which needs no further correction.

PROBLEM 5 .— Given the initial and terminal velocities, to 
calculate the trajectory.

For the solution of this problem we have the following 
equations:

sin 2<p
=  c \

A (v) — A (F) 
S { v ) - S { V ) - / ( F ) }

sin 2(o ~  1  ̂ J 5  (v) - 5 ( F ) )
X = C [ S  {v)-S{V)-\

T = - ^ — \ T ( v) ~  T ( V ) l  cos <p ( '  '  ' j
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Example.— In experimenting with the 15-inch S. B. gun, 
it is desired to place a target at such a distance from the 
gun that the projectile (solid shot weighing 450 lbs.) shall 
have a velocity of 1000 f. s. when it reaches the target, and 
this without diminishing the muzzle velocity, which is 1534 
f. s. What is the required distance and the angle of pro­
jection ?

We readily find, using Table II.,

and ? =  2° 33'
X  =  4678 ft.

CORRECTION FOR VARIATION IN THE DENSITY OF THE AIR.
The ballistic coefficient (C) is determined by the equation

r  — —  A
ccE 8

in which d, is the adopted standard density of the air, and 8 
the density at the time of firing. •

In computing Tables I. and II. the value of 8/ was taken 
as the weight, in grains, of a cubic foot of air at a tempera­
ture of 62° F. and a pressure of 30 inches of mercury. A c­
cording to Bashforth we have

<5/ =  534-22 grs.
For any other temperature (/), and barometric pressure 

(8), we may determine the value of 0 near enough for most 
practical purposes by the following simple equation:

*_ 20.212 b

1 —(- .002178 t
C orrection  for A ltitu d e .— When a projectile is fired 

at such an angle of projection as to reach a great altitude in 
its flight, the value of 8, determined as above, will be too 
great. We may calculate 8 approximately, in this case, as 
follows:

If 8' is the density of the air at the height y  above the 
surface of the earth, we shall have

8' =  Se~x ■
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where X is the height of a homogeneous atmosphere of the 
density 8, which would exert a pressure equal to that of the 
actual atmosphere.*

o 3 ?The factor -f- becomes, therefore, -f- e*\ and C must be o o
multiplied by this if we wish to take into account the dimi­
nution of density due to the height of the projectile, taking 
for y a mean value for the arc of the trajectory which we are 
computing.

. . yThe following table gives the values of e l for every ioo
feet from j  — o  to y —  10,000 feet. In the computation X 
was assumed to be 27800 feet, which is its approximate 
value for a temperature of 150 C. and barometer at om.75- 
The table is substantially the same as that given by Bash- 
forth (“ Motion of Projectiles,” page 103), but in a more con­
venient form.

y 0 TOO 200 300 400 500 6qo 700 800 900

0 1.0000 0036 0072 0108 0145 0181 0218 0255 0292 0329
1000 1.0366 0403 0441 0479 0516 0554 0592 0631 0669 '0707
2000 1.0746 0785 0824 0863 O9 O2 0941 0981 1020 1060 IIOO
3000 1.1140 1180 1220 1260 I 3QI 1341 13S2 1423 1464 1506
4000 1 . 1 5 4 7 1589 1630 1672 1714 1756 !799 1841 1884 1927
5000 1.1970 2013 2057 2100 2144 2187 2231 2276 2320 2364
6000 1.2409 2454 2499 2544 2589 2634 2679 2725 2771 2817
7000 1.2863 2QOQ 2 9 5 6 3003 3049 3096 3 r 44 3191 3239 3286
8000 1-3334 3382 3431 3479 3528 3576 3625 3675 3724 r~3773
9000 1.3823 3873 3923 3973 4023 4074 4125 4176 4227 4278

* Chauvenet’s “  Practical Astronomy,”  vol. i. page 138.



BALLISTIC TABLES.
T he term “ Ballistic Table” was applied by Siacci to 

the tabulated values of the functions 5 (T), A (v), I(v), and 
T(v). Table I. gives the values of these functions for ob­
long projectiles having ogival heads struck with radii of i| 
calibers. It is based upon the experiments of Bashforth, 
and was calculated by the formulas developed in the preced­
ing pages.

The table extends from  ̂=  2800 to ^=400, which limits 
are extensive enough for the solution of nearly all practical 
problems of exterior ballistics. It may occasionally happen 
in mortar practice that the horizontal velocity {vcos<p) may 
be less than 400 (as in problem 4, Chapter V.) In such 
cases we may employ the formulas by which this part of the 
table was computed, viz.:5  (v) =  124466.4 — [4-S9i833°] log v

A (^ =  [9.6655206] [4.1438598] log v 45916-40 '7(z<) =  [5.7369333]-^5 -  0.3564747»  =  [4.2296173] -  12.4999

Example 1.— Let d —  8 in., w —  180 lbs., V =  700 f. s., and 
<p =  6o°. Find v when d —  — 6o°.

We have from (33)

I{u) =  ^ p  +  I{U)

and U =  700 cos 6o° =  350, which is below the limit of 
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the table. The operation may be concisely arranged as 
follows:

const, log =  57369333 
2 log U =  5.0881360

0.6487973 =  log 4-45448 
(60)= 2.39053

log 4 (6o°) =  0.9805542 
log C =  0.4490925

0.5314617 =  log 3-39987 
0.8951103 =  log 7.85435 

2)4.8418230 
2 420911 5 =  log 263.6

. v =  263.6 X 2 =  527.2 f. s.

Example 2.— Given 7  (7) =  25496.8, to find v.
We proceed as follows:

124466.4 
25496.8

log 98969.6 =  4.9954886 
const, log =  4.5918330

log (log v) =  0.40365 56 
log 57=  2.53312

• V—  341.3

Table II. is the ballistic table for spherical projectiles, 
and extends from v =  2000 to  ̂=  450. It is based upon the 
Russian experiments discussed in Chapter II., and is be­
lieved to be the only ballistic table for spherical projectiles 
yet published.

Table III. is abridged from Didion’s “ Traite de Bal- 
istique.”

Form ula} for In terp o la tio n .— To find the value of 
f(v)  when v lies between v1 and vv two consecutive values 
of v, in Tables I. and II. Let vt — =  h. Then, if dx and d,,
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are the first and second differences of the function, we shall 
have, since f{v) increases while v decreases,

f{v) =/(>,) +  ~~ d> Y - v-e Y Y '

by means of which f{v)  can be computed. Conversely, if 
f{v) is given, and our object is to find v, we have

d, = / 0 )  - / ( O  + —
A )  2

In using this last formula, first compute -Vl V by omit­

ting the second term of the second member (which is usually 
very small), and then supply this term, using the approxi-

qj _ *1)
mate value of - L-̂ —  already found.

If the second differences are too small to be taken into 
account, the above formulae become

f(v)  — +

and

v~ v'~Yi  — f ( vS)
which expresses the ordinary rules of proportional parts.

Example I.— Find from Table I. S (v) when £'=1432.6. 
We have v, =  1435, f(v,) =  4704.8, h =  5, and =  24.6.

.-.S(v) =  4704.8 +  I435  ̂I432-6 x  24.6 =  4716.6

Example 2.— Given A (w) =  229.89, to find v. Here v,=. 
1274, f(v ,)  =  229.29, dl =  1.25, and /«= 2.

v —  1274------- (229.89 — 229.29)= 1273.04
1.25

Example 3.— Find from Table II. A (v) when v =  517.8.
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We have ,̂ =  520, A (z/,) —  3 7 5 5 . 9 ,  h —  5, d, —  158.2, and 
d% =  7 - 8 ­

’ 2.2 2.2 /  2.2\ 7 . 8
• •• ^ 0 ) =  3755-9 +  y  X 158.2 -  yi - y j —

=  3755-9 +  69.60 — 0.96 =  3824.5

Example 4.— Find from Table III. the value of {9) when 
9 —  540 32'. Here #, =  54° 20', (#,) — 1.76191, h =  20', d ,=  
.02971, dt =  .00074.

.-. (#) =  1.76191 +0.6 X 0.02971 — 0.6 X 0.4 X 0.00037 
=  1.76191 -j- 0.01783 — 0.00009— 1.77965



TABLE I

Ballistic Table fo r  Ogival-Headed Projectiles.

V S (v) Diff. A  {v) Diff. Hv) Diff. T(v) Diff,

2800 000.0 1268 » 0.00 7 0.00000 106 0.000 46
275° 126.8 1292 0.07 2 I 0.00106 112 0.046 47
2700 256.0 I3 I 5 0.28 36 0.00218 118 0.093 49
2650 387-5 1341 0.64 54 0.00236 I 2 5 0.142 5 i
2600 521.6 ! 36 7 1.18 71 0.00461 i 33 0.193 53
255° 658.3 J 393 1.89 93 0.00594 140 0.246 56

2500 797.6 1422 2.82 i i 5 0.00734 149 0.302 57
2450 939-8 1452 3-97 140 0.00883 160 °-359 60
2400 1085.0 1481 5-37 166 0.01043 169 0.419 62

235° 1233.1 I5 14 7-°3 I Q 7 0.012 12 180 0.481 65
2300 1584-5 1547 9.00 23 T O.OI392 192 0.546 . 68
2250 I5 39-2 1582, 11.31 266 0.01584 205 0.614 72

2200 1697.4 321 13-97 58 0.01789 43 0.686 14
2190 ! 729-5 322 14-55 60 0.01832 44 O.7OO J 5
2180 1761.7 323 I 5 -I 5 62 0.01876 44 0-715 !5
2 I70 1794.0 325 15-77 63 j O.OI92O 44 0-73° !5
2160 1826.5 327 16.40 65 : 0.01964 46 0-745 15
2150 1859.2 328 17-05 67 ' 0.02010 46 0.760 !5
2 140 1892.0 329 17.72 68 0.02056 46 0-775 16
2130 1924.9 3 3 i 18.40 7° 0.02102 47 0-7 91 !5
2 120 1958.0 333 19.10 73 j 0.02 I49 48 0.806 16

2110 I 9 9 I -3 335 19.83 74 0.02197 49 0.822 16
2 100 2024.8 336 20.57 76 0.02246 49 0.838 16
2090 2058.4 337 2 i -33 79 0.02295 5° 0.854 16

2080 2092.1 339 22.1 2 80 0-02345 5 1 0.870 16
2070 2126.0 341 22.92 82 0.02396 5 1 0.886 17
2060 2160.1 3431 23-74 85 0.02447 52 0.903 17

2050 2194.4 344 24-59 87 O.O2499 53 0.920 17
2040 2228.8 346 25-46 89 0.02552 54 0-937 17
203.O 2263.4 348 26.35 9 1 0.02606 54 °-954 17

2020 2298.2 349 27.26 94 0.02660 55 0.971 17
2010 2333-1 3 5 1 28.20 96 0.02715 57 0.988 17
2000 2368.2 3 5 3 l C29.16 98 O.O2772;T£ 574 1.005 18

5



TA BLE I.— C o n t i n u e d .

V S ( v ) Diff. A  (v ) Diff. I (z) | Diff. 7'(v) Diff.

199°
Z W - S 355 3 ° - 14 IOI 0.02829 57 1.023 18

1980 2439.0 [ 356 3 I -I 5 104 0.02886 59 1.041 18
197° 2474.6 358 32.19 107 0.02945 60 1.059 18

i960 2510.4 360 33-26 109 0.03005 6l I.077 !9
^ 5° 2546.4 362 34-35 ” 3 0.03066 61 1.096 ■ 18
1940 2582.6 363 35-48 " 5 0.03127 62 I.I 14 T9
i 93° 2618.9 306 36-63 118 0.03189 64 I ! 33 T9
1920 2655.5 367 37-8 i I 2 I 0.03253 65 1.152 l 9
1910 2692.2 370 39.02 124 0.03318 65 1.171 2 0

1900 2729.2 3 7 i 40.26 127 0.03383 67 I. 191 T9
1890 2766.3 374 4 i -53 130 0.03450 67 1.2 10 20
1880 2803.7 375 42.83 T33 0-03517 69 1.230 20

1870 2841.2 377 44.16 J 37 0.03586 70 1.250 20
i860 2878.9 380 45-53 140 0.03656 7 i I.27O 2 I
1850 2916.9 382 46.93 *43 0.03727 72 I.29I 20

1840 2955-1 383 48.36 147 0.03799 73 1.3H 21
1830 2993-4 386 49-83 15 1 0.03872 74 T-3 32 21
1820 3032.0 388 5 ] -34 155 0.03946 76 T-353 22

1810 3070.8 39° 52.89 158 0.04022 77 1 -3 75 2 I
1800 3 io9-8 3 92 54-47 162 0.04099 78 : -396 22
1790 3 i 49-0 394 56.09 167 0.04177 80 1.418 22

O00r-. 3188.4 396 57-76 171 0.04257 81 1.44° 23
1770 3228.0 399 59-47 174 0.04338 82 , 1-463 22
1760 3267.9 401 61.21 179 0.04420 84 1-485 23

175° 3308-0 403 63.00 183 0.04504 85 1 i-5° 8 23
1740 3348.3 406 64.83 188 0.04589 87J i-5 3 i 24
1730 3388.9 409 66.71 193 0.04676 88 1 

1 I -555 23

1720 3429.8 410 68.64 197 0.04764 9° 1 i -578 24
1710 3470.8 4 i 3 70.61 202 0.04854 91 . 1.602 24
1700 3512.1 4 i 5 72.63 207 0.04945 93

i

1.626 25
1690 3553-6 418 74.70 213 0.05038 95 1.651 25
1680 3595-4 420 76.83 218 °-°5 I 33 96 1.676 25
1670 3637-4 423 79.01 223 0.05229 98 1.701 25

1660 3679-7 425 81.24 228 0.05327 100 1.726 26
1650 3722.2 428 83-52 234 0.05427 102 i -752 26
1640 3765-0 43° 85.86 241 '0-05529 103 1.778 26



T A B LE  I.— C o n t i n u e d .

V S(v) Diff. A  (v) Diff. I{v) Diff. T (v Y Diff.

1630 3808,0 433 88.27 246 0.05632 106 1.804 27
1620 385 !-3 436 90.73 252 0.05738 i o 7 1.831 27
1610 3894-9 438 93-25 259 0.05845 I TO 1.858 27

1600 3938-7 220 95-84 132 0-05955 55 1.885 14
LS95 1 396o-7 22 1 97.16 M 3 0.06010 56 1.899 14
1590 3982.8 222 98.49 M S 0.06066 57 1-9 I3 14
1585 4005.0 223 99.84 137 0.06123 57 1.927 14
158° 4027-3 223 IOI.2 I x39 0.06180 58 i-9 4 i 1415 75 4049.6 224 102.60 140 0.06238 58 1 -955 14157° 4072.0 224 IO4.OO 142 0.06296 59 1.969 14
' 5<>5 4094.4 225 105.42 144 0-06355 59 1.983 15
156c 4116.9 226 106.86 146 0.06414 60 1.998 141555 4139-5 227 108.32 147 0.06474 60 2.012 15
!SS° 4162.2 228 109.79 150 0.06534 61 2.027 15x545 4185.0 228 1 I I.29 151 0.06595 62 2.042 15
154° 4207.8 229 112.80 x53 0.06657 -  62 2.057 !51535 4230.7 229 ” 4-33 155 0.06719 63 2.072 14
1530 4253-6 231 115.88 x57 0.06782 64 2.086 15

T5 25 4276.7 231 H 7-45 r 59 0.06846 64 2.101 16
152° 4299.8 232 I I9.O4 l6 l 0.06910 6S 2.II7 1515 !5 4323-0 232 120.65 163 0.06975 65 2.132 15

1510 4346.2 234 122.28 i 6 5 0.07040 66 2.147 15
>5°S 4369.6 234 I23-93 167 0.07106 67 2.162 16
1500 4393-° 235 125.60 169 0.07173 68 2.1 78 16

1495 4416.5 236 127.29 172 0.07241 68 2.194 16
1490 4440.1 237 I 29.OI i 74 0.07309 69 2.2 10 16
1485 4463.8 237 T3°-75 i 75 0 b *■*

4 CO 69 2.226 16

1480 4487-5 238 132-50 178 0.07447 70 2.242 161475 4 5 H -3 239 134.28 l8l 0.07517 7 i 2.258 16
1470 4535-2 24O 136.09 183 0.07588 72 2.274 16

1465 4559-2 24O x3 7-9 2 185 0.07660 72 2.290 17
1460 4583-2 242 139-77 188 0.07732 73 2.307 1 6

m s s 4607.4 242 ' 741.65 189

■TOO001—0b

74 2.323 !7
i 45° 4 6 3 1 .6 243 M 3-54 M 3 0.07879 75 2.340 17
T44S 4655-9 244, 145-47 i 95 0.07954 75 2-357 17
I 4 4 0 1 4680.3 0.08020 76 2.374 17



TABLE I .—C o n t i n u e d .

V S{v) Diff. A  (v) Diff. I{v) Diff. 7» Diff.

•435 47° 4-8 246 149-39 200 0.08105 77 2-3 9 1 17143° 4729-4 247 I5 I-39 203 0.08182
7o

2.408 •7
1425 4754-1 247 •5 3-4 2 205 0.08260 78 2.425 18

1420 4778.8 248 155-47 208 0.08338 80 2-443 •7
1415 4803.6 249 J57-55 2 11 0.08418 81 2.460 18
1410 4828.5 250 159.66 214 0.08498 81 2.478 l8

1405 4853-5 251 161.80 216 0.08579 82 2.496 18
1400 4878.6 252 163.96 219 0.08661 83 2.514 18
' 3 9 5 . 49P3-8 253 166.15 222 0.08744 84 2-532 18

•39° 4929.1 254 168.37 225 0.08828 85 2-55° 18
1385 4954-5 254 170.62 228 0.08913 86 2.568 •9
1380 4979-9 256 172.90 231 0.08999 87 2-587 18

1375 5O05-5 256 175.21 234 0.09086
o7

2.605 •9
1370 ’ 5° 3 I-i 257 •77-55 237 0.09173 89 2.624 •9
1365 5056.8 258 179-9 2 24I 0.09262 89 2.643 •9
1360 5082.6 260 182.33 243 0-0935 • 9 1 2.662 •9r355 5 108.6 260 184.76 247 c.09442 9 i 2.681 •9
• 35° 5 r34-6 261 187.23 250 0-09533 93 2.700 •91345 5160.7 262 •89-73 254 0.09626 94 2.719 20
1340 5 i8 6 -9 263 192.27 257 0.09719 94 2-739 •91335 5213-2 263 194.84 260 0.09813 95 1 2.758 20

i 33° 5239-5 263 •97-44 262 0.09908 96 2.778 20
132S 5265.8 262 200.06 263 0.10004 97 2.798 20
1320 5292.0 106 202.69 107 o.id io i 39 2.818 8

1318 5302.6 106 203.76 108 0.10140 39 2.826 8
1316 5313-2 106 204.84 108 0.101 79 40 • 2.834 8
1314 5323-8 107 205.92 I 09 0.10219 40 2.842 8

1312 5334-5 107 207.01 I IO 0.10259 4° 2.850 8
1310 5345-2 107 208.11 I 1 I 0.10299 40 2.858 8
■I 3 °8 5355-9 108 209.22 I I I ) 0.10339 41 2.866 9
1306 5366 .7 108 210.33 I 1 2 0.10380 41 2-875 8
i 3 °4 5377-5 108 211.45 ••3 0.10421 41 2.883 9
1302 5388.3 IO9 •212.58 114 0.10462 41 2.892 8

1300 5399-2 IO9 213.72 ••5 0.10503 41 2.9OO 8
1298 5410.1 IO9 214.87 ••5  j 0.10544 42 2.908 9
1296 1 5421.0 I IO 2 16.02 117 10.10586 42 2.917 8



T A B L E  I . — C o n t i n u e d .

V S(v) Diff. A (v) Diff. I  ( V ) Diff. T (v ) Diff.

1294 5432.0 I TO | 217.19 117 0.10628 42 2.925 9
1292 5443-0 I IO 2 1 8.36 118 p 0 O

n

0 43 2-934 8
1290 5454-0 i n 219-54 119 O.IO7J3 43 2.942 8

1288 5465.1 l  r  1 220.73 1 20 0.10756 43 2.950 9
I 286 5476.2 1 11 221.93 120 O. IO799 43 2-959 9
1284 5487-3 11 2 223.13 122 0.10842 44 2.968 9
1282 5498-5 112 224.35 122 0.10886 44 2-977 8
I 280 55° 9-7 ••3 225.57 123 O.IO93O 44 2.985 9
I 278 5521-0 113 226.80 124 O. IO974 45 2-994 9
1276 5532.3 " 3 228,04 125 0.11019 45 3-003 9
1274 5543-6 ' ••3 229.29 125 ! 0.11064 45 3-012 9
1272 5554-9 114 230-54 127 1 O. II I O9 ■ 45 3.021 9
1270 5566.3 114 231.81 127 0.11154 46 3-°3° 9
1268 5577-7 114 233.08 129 f 0,1 1200 46 3-039 9
1266 5589-I 1 ! 5 , 234-37 J 29 0.11246 46 3.048 9
1264 5600.6 " 5  1 235.66 1 3 ' 0.11292 46 3-°57 9
1 262 5612.1 116 236.97 131 0.11338 47 3.066 9
1260 5623.7 I l6

|
238.28 132 0.11385 47 3-°75 9

1258 5635-3 117 239.60 134 : 0.11432 47 3.084 IO
1256 5647-0 116 240.94 134 0.11479 48 3 -°94 9

'1254 5658-6 11 7 242.28 136 0.11527 48 3103 IO

1252 5670.3 118 243.64 136 0.11575 48 3 -J I 3 9
125° 5682.1 I l8 245.00 •37 0.11623 48 3.122 9
1248 5693 9 118 246.37 •39 0.11671 49 3-T3 J IO

1246 5705-7 119 247.76 •3 9 ' 0. T 1720 49 3-I4 I 9
1244 5 7 I 7-6 119 249-15 140 0.11769 5° 3150 I O

1242 5729-5 " 9 250.55 142 0.11819 5° 3.160 9
1240 5741-4 I 2 0 25 i -97 142 0.11869 5o 3.169 I O

1238 5753-4 1 2 0 253-39 •44  1 0.11919 5° 3 -I 79 I O

1236 5765-4 I  2  I 254-83 •44 i 0.11969 5 i 3189 9
1234 5777-5 1 2  I 256.27 146 | 0 . 1 2 0 2 0 5 i 3.198 I O

1232 5789.6 1 2  1 257-73 •4 7 i 0.T2 0 7I 52 3.208 I O

1230 5801.7 1 2 2 259.20 148 ' O.I2I23 52 3-218 I O



TABLE I . — C o n t i n u e d .

V S (v ) Diff. A  (v ) Diff. I {V) Diff. 7» Diff.

1228 S8 I3-9 122 260.68 149 O.I2 T75 52 3.228 IO
1226 5826.1 123 262.17 150 0.12227 53 3-238 IO
1224 5838.4 123 263.67 151 0.12280 53 3-248 IO

I 222 5850-7 123 265.18 '5 3 0.12333 53 3-258 10
1220 5863.0 124 266.71 153 0.12386 53 3.268 IO
1218 5875-4 124 268.24 i 55 0.12439 54 3.278 IO

1216 5887.8 125 269.79 IS6 0.12493 54 3.288 11
1214 5 9 °°-3 125 27 l -35 >57 0.12547 55 3-299 IO
1212 5912.8 125 272.92 J 59 0.12602 55 3-309 IO

1210 5 9 25-3 126 274-5 1 160 0.12657 55 3-3 19 IO
1208 5937-9 126 276.11 161 0.1 2712 56 1 3-329 11
1206 5950.5 127 277.72 162 j 0.12768 56 3-34° 10

I2C4 5963-2 127 279-34 163 0.12824 57 3-35° 11
1202 5975-9 127 280.97 165 0.1 2881 57 3 -3 6 i IO
1200 5988.6 I 28 282.62 166 0.12938 57 3-3 7 i 11

1198 6001.4 128 284.28 167 0.12995 58 3-382 11
1 1 9 6 6014.2 129 285-95 168 0-13053 58 3-393 11
1 1 9 4 6027.1 129 287.63 1 70 0.1311 I 58 3-404 11

I I 9 2 6040.0 130 289-33 171 0.13169 59 3-415 I T
T T9O 6053.0 130 29I.O4 172 0.132281 59 3.426 I I
1188 6066.0 ! 3 ! 292.76 1.74 0.13287 60 3-437 I I'

1186 6079.1 I3 1 294-5° *75 0.13347 60 3-448 I I
1184 6092.2 131 296.25 177 0.13407 60 3-459 I I
1182 6105.3 I3 2 208.O2 178 0.13467 61 3-47° I I

1180 6118.5 132 299.80 179 0.13528 6l 3-4 8 i I I
1178 6131.7 J 33 301.59 l8l 0.13589 62 3-492 12
1176 6145.0 *33 303-40 182 0.13651 62 3-504 I I

1174 6 15 8 .3 i 34 305.22 184 0 -13 7 13 63 3 -5 I 5 I 2
1172 6171.7 134 307.06 185 0.13776 63 3-527 I I
I 170 6185.1 135 308.91 186 0.13839 63 3-538 I 2

1168 6198.6 !35 3 'o -77 188 0.13902 64 3-55° I I
116 6 6212.1 135 312.65 I9O 0.13966 64 3 -S6 i I 2
1164 6225.6 136 3 r4-55 191 0.14030 65 3-573 11



T A B L E  I . — C o n t i n u e d .

i
V S  (?/) ^ (?') Diff. I (v ) Diff. r (v )

1162 6239.2 136 316.46 193 0.14095 65 3-584
1 160 j 6252.8 69 318.39 97 0.14 160 3 2 3-596" 5 9  ' 6259.7 69 3 J9-36 98 0.14192 33, 3.602

1158 6266.6 68 320-34 98 0.14225 33 3.608" 5 7 6273.4 69 321.32 98 0.14258 33 3.614
1156 6280.3 69 322.30 98 O.I429I 33 3.62c

" 5 5 6287.2 69 323.28 99 0.14324 34 ■ 3.626" 5 4  | 6294.1 69 324.27 99 0.14358 331 3-632" 5 3 6301.0 69 325.26 IOO 0.14391 3V 3-638

" 5 2 6307.9 69 1 326.26 IOO 0.14425 33 3-644
" 5 i 6314.8 70 327.26 IOI 0.14458 34 1 3-65°
1150 6321.8 70 328-27 101 0.14492 3 4 , 3-656" 4 9 6328.8 69 ' 329-28 IOI 0.145 26

134 3.662
1148 6335-7 70 330.29 102 0.14560 34 3.668" 4 7 6342-7 70 3 3 1 -3 1 102 0.14594 34 3-674

1146 6349-7 70
1
1 3 3 2*33 103 0.14628 34 3.680" 4 5 6356.7 70 333-36 i o 3 0.14662 35 3.686

11441 6363.7 70 334-39 104 0.14697 34 *: 3-693" 4 3 6370.7 7 i 1 335-43 104 0.14731 35  ̂ 3-699
1142 6377-8 7° | 336.47 104 0.14766 35 3-7°5
I 141 6384.8 7 i 337-5 1 I 0 5 0.14801 35 3-7 "

T I40 639!.9 7 1 j  338.56 i o 5 0.14836 35 3-717" 3 9 6399.0 7 i 339 -6 i 106 | 0.14871 35 3-723
1138 6406.1 7 i 340.67 106 0.14906 36 3-73°" 3 7 6413.2 7 i 341-73 106 O. 14942 35 3-736
1136 6420.3 7 i 342.79 107 0.14977 36 3-742" 3 5 6427.4 72 343-86 108 0.15013 36 3-748" 3 4 6434.6 7 i 344-94 108 0-I 5 °4 9 36 3-755" 3 3 6441.7 72 346.02 108 0.15085 36 3 -7 6 i
1132 6448.9 72 347-16 IO9 O . I 5 I 2 I 36 3-767
1131 6456.1 72 348.19 IO9 ° - 15 15 7 36 3-774
1130 6463-3 7 i 349.28 I 10 o - i 5 i 93 36 3-78o
1 1 2 9 6470.4 72 35o -38 109 0 .15 2 2 9 36 3.786

ii

Diff.

I 2 
6 
6

6
7
6

6
6'
7

6
• 6 

7

6
6
7

V
O

'O
O

 
O

O
O

 
'O

'O
'O

 
'O

'O
'O

 
V
O
 

vO
 vO

 vo



TA BLE I . — C o n t i n u e d .

V • S » Diff. A  (v) Diff. I ( v ) Diff. T ( v ) Diff.

1128 6477.6 72 35 1 -47 I IO 0.15265 37 3-793 6

1 1 27 6484,8 73 35 2-5 7 I I I 0.15302 S 6 3-799 7
1126 6492.1 72 353-68 T i l 0-15338 37^ 3.806 6

1125 6499.3 73 354-79 I I I 0-15375 37 3.812 6
11 24 6506.6 73 3 55-9° 113 0-15412 37 3.818 7
1123 65 ! 3-9 73 357-03 113 0.15449

38 1
3-825 6

I 1 2 2 6521.2 74 358.>6 114 0.15487 37 , 3-831 7
I I 2 1 6528.6 74 359-30 1 T5 0-15524 38 3-838 6

1 1 2 0 6536.0 74 360 45 1 15 0 15562 38 3-844 7
1119 6543-4 74 361.60 116 0.15600 38 3-851 7
m s 6550.8 75 362.76 I l 6 0.15638 38 3-858 6

1117 6558 -3 75 363.92 117 0.15676 39 3-864 7
i n 6 6565.8 75 365-09 119 0-15715 39 i 3-871 7
m s £573-3 75 366.28 ” 9 0.15754 39 3.878 7
1114 6580.8 76 367-47 120 0.15793 39 3-885 7
m 3 6588.4 76 368.67 I 2 I 0.15832 4° 3.892 6
m 2 6596.0 77 369.88. I 2 I 0.15872 4° 3.898 7
1111 6603.7 77 371.09 123 o .i5 9 12 4° 3-9°5 7
1110 6611.4 77 372.32 123 o-i5952 4 i 3-9 12 7
1109 6619.1 78 373-55 I 24 o-i5993 4° 3-9 ! 9 7
1108 6626.9 78 374-79 125 0.16033 41 3 926 7
1107 6634.7 78 376-04 126 0.16074 41 3-933 7
1106 6642.5 78 377-3° 127 0.16115 42 3 940 7
1105 6650.3 79 378-57 128 0.16157 41 3-947 8

1104 6658.2 80 379-85 I29 0.16198 42 3-955 7
1103 6666.2 79 381.14 130 0.16240 42 3.962 7
1102 6674.1 80 382.44 1 3 1 0.16282 43 3-969 7
1101 6682.1 81 383-75 1 3 1 0.16325 42 3-976 7
1 100 6690.2 81 385 °6 132 0.16367 43 3 -9 8 3 8
1099 6698.3 81 386.38 133 0.16410 43 3-9 9 i 7
1098 6706.4 81 3 8 7 - 7 1 1 3 5 0.16453 44 3-998 8
1097 6 7 1 4 - 5 82 389.06 1 3 5 0.16497 44 4.006 7
1096 6722.7 8 3 3 9 0 - 4 1 '137 0.16541 44 4013 8

12



TABLE I . — C o n t i n u e d .

V Diff. A  (v) Diff. I { v ) Diff. 7»

i o 95 6731.0 82 3 9 M 8 137 0.16585 44 4.021
1094 6739.2 83 393-15 138 0.16629 45 4.029
1093 6747-5 84 394-53 140 0.16674 45 4.036

1092 6755-9 84 395-93 141 0.16719 45 4.044
IO9I . 6764.3 84 397-34 141 0.16764 46 4 -o5 i
IO9O 6772.7 85 398.75 142 0.16810 46 4 -°59
1089 6781.2 85 400.17 143 0.16856 46. 4.067
1088 6789.7 8.5 401.60 145 0.16902 46 4-°75
1087 6798.2 86 4° 3-°5 145 0.16948 47 4.083

1086 6806.8 86 404.50 147 0.16995 47 '  4-091
1085 6815.4 87 405-97 148 0.17042 47 4.098
1084 6824.1 87 407-45 149 0.17089 48 4.106

i o 8 3 6832.8 87 408.94 150 0-17137 48 . 4-H 4
1082 6841.5 88 410.44 1 5 1 0.17185 48 4.122
1081 6850.3 88 411-95 i 5 2 0.17233 49 4-i3°

1080 6859.1 88 413-47 153 <NCONf".d 49 4-138
1079 6867.9 89 415.00 154 0.17331 49 4.146
1078 6876.8 90 416.54 156 0.17380 49 4-155
1077 6885.8 89 418.10 156 0.17429 5° 4-163
1076 6894.7 90 419.66 158 0.17479 50 4.172
io 75 6903.7 9 1 421.24 159 0.17529 5 i 4.180

1074 6912.8 9 1 422.83 l6 l 0.17580 5 i 4.189
1073 6921.9 92 424.44 162 0.17631 5 i 4-197
1072 6931.1 92 426.06 163 0.17682 5 i 4.206

IO7I 6940.3 92 427.69 164 0.17733 52 4.214
1070 6949-5 93 429-33 165 0.17785 52 4.223
1069 6958.8 93 430.98 166 0.17837 53 4.232

1068 6968.1 94 432.64 168 0.17890 53 4.241
1067 6977-5 94 434-32 169 0.17943 53 4.250
1066 6986.9 94 436.01 171 0.17996 53 4-259
1063 6996.3 95 437-72 172 0.18049 54 4.268
1064 7005.8 96 439-44 173 0.18103 55 4.277
1063 7015-4 96 441.17 175

13

0.18158 55 . 4.286

j>.CQ 00 
00 00 CO 

r-CO 00 
00 00 00 

CO OsCQ 
CNOO Os 

00 On CO 
Os Cs On 

Cn Os Os 
On Os ON



T A B LE  I . — C o n t i n u e d .

V S(v) Diff. A  (v) Diff. I  {v) Diff. 7 »

1062 7025.0 96 442.92 176 0 .1 8 2 1 3 55 4-295
10 61 7034.6 97 444.68 17 7 0 .18268 55 4-3°4
X060 7044-3 97 446.45 178 0 .18323 56 4-3i3

1059 7o54-o 98 448.23 180 0 .18 3 7 9 56 4.322
10 58 7063.8 98 45O-03 l 8 l 0 .18 4 3 5 56 4-332
i°57 70 73.6 99 45I-84 182 0 .1 8 4 9 1 57 4-341

10 56 7o83-5 99 453-66 184 0 .18 5 48 57 4-35°
I055 7093-4 IOO 455-5o 186 0.18605 58 4.360

i°54 7I03-4 IOO 457-36 187 0 .18663 58 4-369

i°53 7II3-4 IOO 459-23 189 0 .1 8 7 2 1 58 4-378
10 52 7123-4 101 4 6 1 . 1 2 190 0 .1 8 7 7 9 59 4-387
10 51 7133-5 102 463.02 192 0 .18838 59 4-397

1050 7143-7 102 464.94 193 0 .188 97 59 4.406
1049 7153-9 102 466.87 19 4 0 .18 9 5 6 60 4 .4 16
1048 7 1 6 4 .1 103 468.81 196 0 .1 9 0 16 6 l 4.426

1047 7I74-4 103 470 .77 197 0 .1 9 0 7 7 6 l 4-436
1046 7 x84.7 104 472-74 199 0 .1 9 1 3 8 61 4 .446

10 45 7i95-i i°5 474-73 201 0 .1 9 1 9 9 6 l 4-455
10 44 7205.6 i°5 476.74 203 0 .19260 62 4-465
i°43 7 2 1 6 .1 i°5 478.77 204 0 .19322 63 4-475
1042 7226.6 106 480.81 206 0-19385 63 4-485

10 41 7237.2 107 482.87 208 0 .19448 63 4-495
1040 724 7.9 107 484-95 209 0 .1 9 5 1 1 64 4-505
io39 7258.6 107 487.04 2 11 0 -19575 64 4-5i6

1038 7269.3 108 489-15 2 13 0 .19 6 39 64 4.526
10 37 7280.1 IO9 4 9 1.2 8 2 14 0 .19 70 3 65 4-537
1036 7 2 9 1.0 IO9 493-42 2 16 0 .19 7 6 8 66 4-547

io35 73°i-9 IIO 495-58 218 0 .19 8 3 4 66 4-558
10 34 7312-9 no 4 9 7 .7 6 2 19 0.19900 66 4-569
i°33 7323-9 in 499-95 222 0 .19966 67 4-579

1032 7335-o h i 5 0 2 .17 223 0.20033 67 4-59°
10 31 7346.1 11 2 504.40 225 0.20100 68 4.600
1030 7357-3 1 1 2 506-65 226 0.20168 68 1 4 .6 1 1

14

Diff.
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TA BLE I .— C o n t in u e d .

V S ( v ) Diff. A  ( ? ) Diff. f ( v ) Diff. 7 » Diff.

1029 7368.5 113 508.91 229 0.20236 69 4.622 I  I
1028 7379-8 ” 3 511.20 230 0.20305 69 4-633 12
1027 7 3 9 i-i 114 5 I3-5° 232 0.20374 69 4-645 I  I
1026 74o2-5 115 5 i 5 - 8 2 235 0.20443 70 4.656 11
1025 7414.0 ” 5 518.17 237 0.20513 7 i 4.667 11
1024 7425-5 I l 6 520.54 238 0.20584 7 r 4.678 11

1023 7437-1 116 522.92 240 ; 0.20655 7 i 4.689 12
1022 7448.7 117 525-32 243 0.20726 72 4.701 I I
1021 7460.4 117 527-75 245 0.20798 73 4.712 I I
1020 7472.1 118 530.20 246 0.20871 73 4-723 12
IOI9 7483-9 118 532.66 248 0.20944 73 4-735 12
1018 7495-7 1 1 9 5 3 5 -!4 251 0.21017 74 4-747 12

IOI7 7507.6 120 537-65 252 0.21091 74 4-759 12
1016 75i 9-6 120 540.17 255 0.21165 75 4-771 II
1015 7531-6 I 2 I 542.72 258 0.21240 76 4.782 12

IOI4 7543-7 12 I 545-3° 259 0.21316 76 4-794 12
1013 7555-8 122 547-89 262 0.21392 76 4.806 12
1012 7568.0 123 5 50-5 1 265 0.21468 77 4.818 12

IOII 7580.3 123 553-16 266 0.21545 78 4.830 12
IOIO 7592.6 124 555-82 269 0.21623 78 4.842 13
IOO9 7605.0 124 558.51 272 0.21701 79 4-855 12

1008 7617.4 I 2 5 561.23 273 0.21780 79 4.867 13
1007 7620.0 126 563-96 275 0.21859 80 4.880 12
1006 7642.5 126 566.71 278 0.21939 80 4.892 13

1005 7655-1 127 569-49 280 0.22019 81 4-9°5 13
IOO4 7667.8 128 572.29 282 0.22100 82 4 -9 l8 12
1003 7680.6 128 575-11 285 0.22182 82 4-930 13

1002 7693-4 1 2 9 577-96 287 0.22264 83 4-943 12I O O I 7706.3 130 580.83 289 0.22347 83 4-955 13
IOOO 7 7 I 9-3 131 583-72 2 9 2 0 . 2 2 4 3 0 84 4.968 13

999 7732.4 132 586.64 29S O . 2 2 5 1 4 85 4.981 14
9 9 8 7745-6 132 589-59 297 0.22599 85 4-995 13997 7758.8 i 33 592-56 300

15

10.22684 86 5-oo8 1 14



TA BLE I.—C o n t i n u e d .

■ V ■ s(*0 Did. A  (v) Did. I ( v ) Did. Did.

996 7 7 7 2 .1 133 5 95 -56 3 °3 0 .22770 87 5.022 t 399 5 7785-4 133 598-59 306 0.22857 87 5-°35 13994 7798.7 134 60 1.65 3 °9 0.22944 87 5.048 14993 7 8 1 2 .1 134 604.74 3 1 1 0.23031 87 5.062 139 9 2 7825.5 I 35 607.85 3 i 4 0 .2 3 1 1 8 88 5-°75 149 9 1 7839.0 i 35 610 .99 3 J 7 0.23206 89 5.089 13
990 7852-5 136 6 1 4 . 1 6 3 i 7 0.23295 89 5.10 2 14
989 7866.1 136 6 i 7-33 3 i 9 0.23384 9° 5 . 1 1 6 14
988 78 79.7 i 37 620.52 321 0 .23474 90 5- i 3o 14

987 7893-4 i 37 623.73 323 0.23564 9 i 5 -I 44 14
986 79 0 7 .1 i 37 626.9 6 325 0.23655 9 i 5 - I 58 13
985 7920.8 i 37 630.21 327 0-23746 9 1 5- i 7 i 14

984 7934-5 138 633-48 329 0.23837 92 5-185 1 4
983 7948.3 138 636 .77 3 3 i 0 .23929 92 5- i 99 14
982 79 62.1 138 640.08 333 0.24021 92 5-213 14

981 7975-9 i 39 643-41 335 0 .2 4 1 1 3 93 5.227 14
980 7989.8 i 39 646.76 336 0.24206 93 5-241 H979 8003.7 i 39 650 .12 339 O.24299 93 5-255 i 5
978 8 0 17 .6 i 39 653-5 I 3 4 i 0.24392 94 5.270 14977 8031-5 140 656.92 343 0.24486 94 5.284 r 5
976- 8045-5 140 660.35. 345 0.24580 95 5-299 14975 8o 59-5 140 663.80 346 0.24675 95 5-313 14974 8073-5 141 667.26 349 0.24770 95 5-327 i 5973 8087.6 14 1 670.75 3 5 i 0.24865 96 5-342 14

972 8101.-7 14 1 674.26 354 0.24961 96 5-356 i 5
971 8 1 1 5 .8 14 1 677.80 355 0.25057 97 5 -3 7 i 1497° 8 129.9 142 68 1.35 357 0 -2 5 15 4 97 5-385 15
969 8 14 4 .1 142 684.92 359 0 .25 25 1 97 5.400 !5
968 815 8.3 142 688.51 361 0.25348 98 ■ 5-4 T5 14
967 8 1 7 2 .5 i 43 69 2 .12 363 0.25446 98 5-429 15

966 8186.8 M 3 695-75 366 0 .25544 99 5-444 15965 8 2 0 1.1 i 43 699.4 1 368 0.25643 99 5-459 !5
964 8 2 15 .4 14 4 703.09 3 7 ° 0.25742 99 5-474 . 15

16



TA B LE  I . — C o n t i n u e d .

V S(v) Did. A  (v) Diff. I{v) Diff. 7 » Diff.

963 8229.8 144 706.79 372 0.25841 I OO 5-489 14
962 8244.2 144 710.51 375 0.25941 I OO 5-5 °3 15
961 ! 8258.6 144 714.26 377 0.2,6041 I O I 5-5 i 8 15
960 8273.0 144 718.03 378 0.26142 I O I 5-533 15959 8287.4 *45 721.81 3 8 1 0.26243 I O I 5-548 l6958 8301.9 145 725.62 384 0.26344 102 5-564 15957 8316.4 146 729.46 386 0.26446 103 5-579 *5956 I 8331.0 146 733-32 388 0.26549 103 5-594 15955 ' 8345.6 146 737.20 39° 0.26652 103 5.609 l6

954 8360.2 146 741.10 393 0.26755 103 5-625 J 5953 8374-8 147 745-°3 395 0.26858 104 5.640 !595 2 8389-5 147 748.98 398 0.26962 i ° 5 5-655 16

9 5 i 8404.2 148 752.96 400 0.27067 i o 5 5-671 T595° 8419.0 148 756.96 402 0.27472 J °5 5.686 16949 8433-8 148 760.98 404 0.27277 106 5.702

948 8448-6 148 765.02 407 0.27383 106 5-7 i 8 15947 8463.4 149 769.09 409 0.27489 107 -5-733 l6
946 8478.3 149 7 7 3 - i 8 412 0.27596 107 5-749 l6

945 8493.2 149 777-3° 415 0.27703 108 5-765 l6944 8508.1 15° 7 8 i . 4 5 4 i 7 0.27811 108 5 -7 8 i l6943 8 5 2 3 - i 15° 785.62 420 O.279I9 108 5-797 15

942 8538.1 15° 789.82 422 0.28027 109 5.812 16
941 8553-1 151 794.04 425 0.28136 I I O 5.828 16
940 8568.2 151 798.29 427 0.28246 I IO 5-844 16

939 8583-3 151 802.56 429 0.28356 I I I 5.860 179 3« 8598.4 ! 5 2 806.85 432 0.28467 I I I 5-877 16937 8613.6 152 811.17 435 0.28578 I I I 5-893 16

936 8628.8 ! 5 2 8 i 5-52 437 0.28689 I 1 2 5-909 1 7935 8644.0 ! 5 2 819.89 441 0.28801 1 1 2 5.926 16934 8659.2 J 53 824.30 443 0.28913 H 3 5-942 16

933 8674-5 J 53 , 828.73 445 0.29026 114 5-958 16932 8689.8 T54 833-18 449 0.29140 114 5-974 1 79 3 i 8705.2 154 837.67 4 5 1 0.29254 114 •5-9 9 1 16

17



TA BLE I . — C o n t i n u e d .

V S(v) Diff. A  (v) Diff.

93° 8720.6 154 842.18 4539 29 8736.0 155 846.71 456
928 875!-5 T55 851.27 459
927 8767.0 T55 855-86 462
926 8782.5 i 55 860.48 4659 2S 8798.0 156 865-I3 468

924 8813.6 156 869.81 47°
923 8829.2 x57 874-5 I 474
922 8844.9 i 57 879.25 477
921 8860.6 i 57 884.02 479
920 8876.3 *57 888.81 482 ;
919 8892.0 158 893-63 485 .

918 8907.8 i 59 898.48 488
917 8923.7 158 903.36 4 9 1
916 S939-5 *59 908.27 4949 iS 8955-4 i 59 913.21 497
914 8971-3 160 918.18 5° i9*3 8987-3 160 923.19 503

912 9003.3 160 928.22 5° 69 11 9019.3 161 933-28 509
910 9° 35-4 l6 l 938.37 5 X39 °9 9 0 5 I -5 l6 l 9 43-5° 5*5
908 9067.6 162 948.65 5 X99°7 9083.8 162 953-84 522

906 9 1 0 0 .0 162 959.06 5259°S 9116.2 163 964.31 529
904 9132.5 163 969.60 5329 °3 9148.8 164 974.92 535
9 0 2 9165.2 164 980.27 538
9 0 1 9181.6 164 985-65 5 4 i

9 0 0 9198.0 i 65 991.06 545
899 9214-5 165 996.51 548
898 9231.0 165 I O O I . 9 9 552

jk

I{v) Diff. T{v) Diff.

0.29368 115 6.007 17
0.29483 I15 6.024 17
0.29598 I l 6 6.041 '  l 6

0.29714 I l 6 6.057 i 7
0.29830 117 6.074 17
0.29947 117 6.091 17

0.30064 118 6.108 17
0.30T82 118 6.125 16
0 30300 i i 9 6.141 17

0.30419 i i 9 6.158 17
0.30538 120 6.175 17
0.30658 120 6.192 18

0.30778 121 6.210 17
0.30899 121 6.227 18
0.31020 122 6.245 i 7
0.31142 122 6.262 17
0.31264 123 6.279 18
0.31387 124 6.297 170.3I511 124 6.314 18
0.31635 125 6.332 17
0.31760 125 6-349 18

°-3i 885 126 6.367 18
0.320II 126 6-385 18
0.32137 127 6.403 18

0.32264 128 6.421 18
0.32392 128 6-439 18
0.32520 129 6-457 18

0.32649 129 6-475 18
0.32778 130 6-493 18
0.32908 130 6.511 18

0.33038 I31 6.529 x9
0.33169 131 6.548 18
0.3330° 132 6.566 l 9



TABLE I.— C o n t in u e d .

V S(v) Diff. 4  C) Diff.

897 9 247-5 16 6 10 0 7.5 1 555
896 9264.1 166 X013.06 559
8 9S 9280.7 166 10 18 .65 562

894 9 297-3 167 1024.27 5658 93 9 3 ! 4 -o 167 1029.92 569
892 933°-7 168 10 3 5 .6 1 573
891 9347-5 168 10 4 1 .3 4 576
890 9364-3 168 10 4 7 .10 580
889 9 3 8 1 .1 169 1052,90 583
888 9398.0 169 1058-73 587
887 9 4 14 .9 170 1064.60 592
886 9431-9 170 1070.52 595
885 9448.9 170 10 76.47 598
884 9465-9 1 7 1 1082.45 602
883 9483.0 1 7 1 1088.47 606

882 9500.1 171 l ° 94-53 609
881 9 5 1 7-2 172 110 0 .62 6 13
880 9534-4 172 11 0 6 .7 5 6 1 7

879 9551-6 173 I 1 12 .9 2 621
878 9568.9 173 1 1 1 9 . 1 3 625
877 9586.2 173 I I 25-38 629

876 9603-5 174 1 1 3 1 .6 7 633875 9620.9 174 1138.0 0 637
874 9638.3 175 H 44-37 641

873 9655-8 r 75 1 1 5 0 .7 8 645
872 9673-3 I 75 I I 57-23 649
87 1 9690.8 176 1 1 6 3 .7 2 653

870 9708.4 1 7 6 11 7 0 .2 5 657
869 9726.0 1 7 7 117 6 .8 2 662
868 9743-7 1 7 7 1 1 8 3 .4 4 665

867 9 7 6 1 .4 177 I I 9 O . O 9 670
866 9 7 7 9 .1 178 1 1 9 6 . 7 9 675
865 9796.9 178 12 0 3 .5 4  678

19

I{v) Diff. 7» Diff.

0 -3 3 4 3 2 133 6.585 180.33565 133 6.603 l 9
0.33698 134 6.622 18

O .33832 134 6.640 19
0.33966 135 6.659 18
0 .3 4 10 1 136 6.677 J 90.34237 136 6.696 180-34373 137 6 . 7 1 4 190 -3 4 5 IO 137 6-733 20

0.34647 138 6-753 *9
0 . 3 4 7 8 5 139 6.772 1 9
0.34924 139 6.79 1 20

0.35063 140 6 .8 1 1 1 9
0-35203 141 6.830 190-35344 1 4 1 6.849 1 9°-35485 142 6.868 20
0 .35 627 M 3 6.888 19
o .3577o 143 6.907 20

0.35913 14 4 6.927 20
0.36057 145 6-947 19
0.36202 145 6.966 20

0.36347 146 6.986 200-36493 146 7.006 20
0.36639 147 7.026 20

0.36786 148 7.046 ' J 9
0.36934 149 7.065 20
0.37083 149 7-085 20

0 .37232 ! 5° 7- i °5 21
0.37382 150 7 .1 2 6 200-37532 i S 1 7 .14 6 21

0.37683 1 5 2 7 .1 6 7 200.37835 i 53 7 .18 7 21
0 .3798 8 i 53 7.208 21



TA BLE [ .— C o n t i n u e d .

864
863
862

861
860
859

858
857
856

8 5 5
854
8 5 3

852
851
850

849
848
847

846
845
844

843
842
841

840
839
838

837
836
835

834
833
832

SW

9814.7
9832.6
9850-5

9868.4
9886.4
9904.4

9922.5
9940.6
9958-7

9976.9
9 9 9 5 - 2

10013.5

10031.8
10050.2
10068.6

10087.1
10105.6
10124.1

10142.7
10161.3
10180.0

10198.8
10217.5
10236.3

10255.2
10274.1
10293.0

10312.0
I033I-°
10350.1

10369.2
10388.4
10407.6

Diff.

1 7 9

1 7 9

1 7 9

1 8 0

1 8 0

1 8 1

1 8 1

1 8 1

1 8 2

1 8 3

183 
183
1 8 4

1 8 4

185

185
185
1 8 6

1 8 6

1 8 7

1 8 8

1 8 7

1 8 8

1 8 9

1 8 9

1 8 9

1 9 0

1 9 0

1 9 1
1 9 1

1 9 2

1 9 2193

A  {v)

1210.32 
1217.15 
1224.02

1230.93
1237.89
1244.89

1251.94 
1259.04
1266.18

1273.36
1280.59
1287.87

I 2 9 5 - T9
1302.56
1309.98

I 3 I 7 - 4 4
1324.96
i 3 3 2 -5 2

1340-13
1 3 4 7 - 7 9
1 3 5 5 -5 °

1563.26
1371.071378.93
1386.84
1394.80
1402.82

1410.89
1419.01
1427.18

I 4 3 5 -4 I
1443.69
1452.02

Diff.

683
687
691

696
700705
710714
718723
728732
7 3 7742
746752
7 5 6
761

766
771
776

781
786
791

796
802
807

812
817
823

828
8 3 3
8 3 9

I {v )

0.38141
0.38295
0.38450

0.38606
0.38762
0.38919

0.39077
0-39235
0.393940-39554
°-397i 5
0.39877

0.40039
0.40202
0.40366

0.40530
0.40695
0.40861

0.41028 
0.41196 
0.41364

o-4 i 533
0.41703
0.41874

0.42046 
0.42218 
0.42392

0.42566
0.42741
0.42917

0.43093
0.43271
0 - 4 3 4 4 9

Diff.

1 5 4155 
!56

156
157
158

158
159
160

161
162
162

163
164
164

165
166
167

168
168
169

170
171
172

172
174
174

175
176 
176

178
178
180

7»

7.229
7.249
7.270

7.290
7 -3 11
7 - 3 3 2

7 - 3 5 4
7 -3 7 57.396
7.418
7 - 4 3 9
7.460

7.481
7 -5 ° 37-524
7 - 5 4 6
7.568
7 -5 9 °

7.612
7 -6 3 5
7 - 6 5 7

7.679
7.701
7-723

7 - 7 4 5
7.768
7.790

7 -8 i 3
7.836
7.858

7.881
7.904
7.928

Diff.

2 0  

2 I
2 0

2 I
2 I 
2 2

21
21
2 2

21
21
21

2 2

21
2 2

22
2 2

22

23
22
2 2

22
2 2

22

23
2223
23
22

23

23
24

23



T A B LE  I . — C o n t i n u e d .

V Diff. A  (v) Diff. /(*/) Diff. 7» Diff.

831 10426.9 193 1460.41 844 0.43629 180 7-951 23
83° 1 10446.2 194 1468.85 850 0.43809 l8l 7-974 23
829 10465.6 194 1477-35 855 0.43990 l82 7-997 24

828 10485.0 194 1485.90 861 O.44I72 182 8.021 23
827 10504.4 J 95 1494-5 1 867 0-44354 184 8.044 24
826 I05 23-9 195 i 5° 3 l8 872 0.44538 184 8.068 23

82s i ° 543-4 196 15H.90 879 0.44722 186 8.091 24
824 10563.0 197 1520.69 883 0.44908 186 8.115 24
823 10582.7 197 I529-52 890 c.4 5 °9 4 188 8.139 24

822 10602.4 197 1538.42 896 0.45282 188 8.163 24
821 10622.1 198 I547-38 901 o.4547o 189 8.187 24
820 10641.9 198 1556.39 908 0.45659 190 8.211 24

819 10661.7 199 i 565-47 9 J 4 0.45849 191 8-235 24
818 10681 6 200 iS 74-6 i 919 0.46040 191 8-259 25
817 10701.6 200 1583.80 925 0.46231 T93 8.284 24

816 10721.6 200 i 593-°5 932 0.46424 194 8.308 25
815 10741.6 201 1602.37 938 0.46618 194 8-333 24
814 10761.7 201 1611.75 945 0.46812 196 8-357 25

813 10781.8 202 1621.20 950 0.47008 197 8.382 25
812 10802.0 202 1630.70 957 0.47205 197 8.407 25
811 10822.2 203 1640.27 963 0.47402 199 8.432 25
810 10842.5 203 1649.90 970 0.47601 199 8-457 25
809 10862.8 204 1659.60 976 0.47800 201 8.482 25
808 10883.2 204 1669.36 983 0.48001 201 8-5 °7 26

807 10903.6 205 1679.19 989 0.48202 202 8-533 25
806 IO924.I 205 1689.08 996 0.48404 204 8.558 26
805 10944.6 206 1699.04 1003 0.48608 204 8.584 26

804 10965.2 206 I7O9.O7 IOO9 0.48812 206 8.610 25
803 10985.8 207 1719.16 1016 0.49018 207 8635 26
802 11006.5 207 1729.32 1023 0.49225 207 8.661 26

801 I 1027.2 208 1739-55 1029 0.49432 209 8.687 26
800 11048.0 208 1749.84 1037 0.49641 209 8.713 26799 11068.8 209 1760.21 1043 0.49850 2 11 8-739 26

21



TA B LE  I.— C o n t i n u e d .

V ■ S(») Diff. A  {v)

798 1 1089.7 210 1770.64797 11110.7 210 1781.15
796 11131.7 210 1791.72
795 11152-7 21 I 1802.37794 11173.8 2 12 1813.10793 I H 95-0 212 1823.89

792 11216.2 213 1834.76
791 H 237-5 213 1845.7079° 11258.8 2 I 5 1856.71

789 11280.3 215 1867.87
788 11301.8 216 1879.08787 i i 3 23-4 216 1890.36

786 I I 345-° 216 I9OT.7O
785 11366.6 216 1913.11
784 11388.2 216 1924.57

783 11409.8 217 1936.10
782 1 14 3 I -5 218 1947.70
781 1 1453-3 217 ! 959-36

780 i i 475-° 218 1971.08779 11496.8 218 1982.87
778 11518.6 218 1994.72

777 11540.4 218 2006.64
776 11562.2 219 2018.62775 11584.1 219 2030.68

774 11606.0 219 2042.80773 11627.9 220 2054.98
772 1 1649.9 220 2067.24

771 11671.9 220 2079.5677° 11693.9 22 1 2091.95
769 11716.0 220 2 IO4.4I

768 11738.0 221 2116.94
767 11760.1 222 2129.54
766 11782.3 222 2142.21

Did. 1  (*') Diff. T(v) Diff.

1 0 5 1 0 . 5 0 0 6 1 2 1 2 8 . 7 6 5 2 6

l °57 0 . 5 0 2 7 3 2 1 3 8 . 7 9 1 27
1 0 6 5 0 . 5 0 4 8 6 2 1 4 8 . 8 1 8 2 6

1 0 7 3 O.507OO 2 1 5 8 . 8 4 4 2 7

10 7 9 , °-5° 9I5 2 1 6 8 . 8 7 1 2 6

1 0 8 7 o -S 'U 1 2 1 7 8 . 8 9 7 2 7

1 0 9 4 °-5I 348 2 1 8 8 . 9 2 4 2 7

I I O I °-5! 566 2 2 0 8 . 9 5 1 27
1 1 1 6 0 . 5 1 7 8 6 2 2 2 8-97.8 27
I I 2 I 0 . 5 2 0 0 8 2 2 3 9 . 0 0 5 27
1 1 2 8 0 . 5 2 2 3 1 2 2 3 9 . 0 3 2 2 8

1 1 3 4 0-52454 2 2 4 9 . 0 6 0 27
I I4I 0 . 5 2 6 7 8 2 2 6 9 . 0 8 7 27
1 1 4 6 0 . 5 2 9 0 4 2 2 6 9- i i 4 2 8

1 1 5 3 °-53I3° 2 2 7 9 . 1 4 2 2 8

1 1 6 0 0-53357 2 2 8 9 . 1 7 0 27
1 1 6 6 °-53585 2 2 8 9 . 1 9 7 2 8

1 1 7 2 °-538i 3 2 3 0 9 . 2 2 5 2 8

1 1 7 9 o-54043 2 3 0 9-253 2 8

1 1 8 5 I 0-54273 2 3 1 9 . 2 8 1 2 8

l  1 9 2 o-545o4 2 3 2 9-3°9 2 8

1 1 9 8 0-54736 2 3 3 9-337 2 8

1 2 0 6 0 . 5 4 9 6 9 2 3 4 9 3 6 5 29
1 2 1 2 0 - 5 5 2 0 3 2 3 5 9-394 2 8

1 2 1 8 o-55438 2 3 6 . 9 . 4 2 2 2 8

1 2 2 6 °-55674 2 3 7 9-45° 29
1 2 3 2 0 -5 5 9 U 2 3 7 9-479 2 8

1 2 3 9 0 . 5 6 1 4 8 2 3 9 9-5°7 29
1 2 4 6 0 . 5 6 3 8 7 2 3 9 9-536 29
1 2 5 3 0 . 5 6 6 2 6 2 4 I 9 - 5 6 5 2 8

1 2 6 0 0 . 5 6 8 6 7 2 4 I 9-593 29
1 2 6 7 0 . 5 7 1 0 8 2 4 2 9 . 6 2 2 29
1 2 7 4 °-5735° 2 4 4 9 - 6 5 1 29

22



TA B L E  I . — C o n t i n u e d .

V

1
Did. A  (v) Did. f{v ) Did. 7» Did.

765 11804.5 222 2154-95 1281 0-57594 244 9.680 29
764 1 11826.7 222 2 167.76 1288 0 .57838 245 9.709 29
763 11848.9 222 2180.64 I2 95 0.58083 247 9T 38 29

762 11871.1 223 2193-59 >3 °3 0.58330 247 9.767 30
761 ' 11893-4 223 2206.62 I3 °9 0.58577 248 9-797 29
760 ™ 9 l 5-7 223 2219.71 1 3 1 7 0.58825 249 9.826 29759 1 1938-0 224 2232.88 1324 0.59074 250 9.855 30758 11960.4 224 2246.12 ! 3 3 2 ° .5 9 3 2 4 251 9.885 29757 11982.8 225 2259.44 T339 0-59575 252 9.914 3°756 12005.3 224 2272.83 1347 0.59827 253 9-944 29755 ! 12027.7 225 2286.30 1354 0.60080 254 9-973 3°754 | 12050.2 226 2299.84 1361 0.60334 255 10.003 30

753 12072.8 225 23 r3.45 ! 3 69 . 0.60589 256
!

IO.033 3°7 52 12095.3 226 2327.14 13 7 7 0.60845 258 10.063 307 5 1 i 12117.9 226 2340.91 1384; 0.61103 - 258 10.093 3°75° 12140.5 226 2354-75 !392 0.61361 259 10.123 3°749 12163.1 227 2368.67 13991 0.61620 260 10 .15 3 3 i
748 12185.8 227 2382.66 1408 0.61880 262 10.184 3°747 1 12208.5 227 2396.74 1415 0.62142 262 IO.214 3°
746 | 12231.2 227 2410.89 1423 0.62404 263 IO.244 3 i745 12253.9 228 2425.12 1432 0.62667 265 10.275 3 i744 12276.7 22g 2439-44 1439 0.62932 266 10.306 3°743 12229.6 228 2453-83 1447 0.63198 266 10.336 3 i
742 12322.4 229 2468.30 H 56 0.63464 268 10.367 3 i7 4 i I2345-3 229 2482.86 1463 0.63732 269 10.398 3 i
740 12368.2 229 2497.49 1472 0.64001 270 IO.429 3 i739 12391.1 230 2512.21 1480 0.64271 271 10.460 3 i738 I24I4.I 230 2527.01 1488 0.64542 272 IO.491 3 i737 12437.1 230 2541.89 1497 0.64814 273 IO.522 32736 12460.1 231 2556.86 i 5°5 0.65087 274 i °-554 3 i735 12483.2 231 2571.91 1 5 1 3 0.65361 276 10-585 3 i734 12506.3 2 3 1 2587.04 1521 0.65637 276 10.616 3273 3 12529.4 232 2602.25 1530 0.65913 278 10.648 3 i

23



TABLE I.—C o n t i n u e d .

V S  (v) Diff. A  (») Diff. /  (v) " Diff. 7» Diff.

732 12552.6 232 2 6 I 7-55 1539 0.66191 279 10.679 327 3 i 12575-8 232 2632.94 1547 0.66470 280 10.71 I 3273° 12599.0 233 2648.41 1556 0.66750 281 10-743 32

729 12622.3 233 2663.97 15 6 4 0.67031 282 1 °-7  75 32
728 12645.6 233 2679.61 1573 0.67313 283 10.807 32
727 12668.9 234 2695.34 1582 0.67596 285 10.839 32

726 12692.3 2 33 2711.16 i 5 9 i 0.67881 286 10.871 32
725 12715.6 234 2727.07 1600 0.68167 287 10.903 33
724 12739.0 235 2743-07 1609 0.68454 288 10.936 32

723 12762.5 235 2759.16 1617 0.68742 289 10.968 33
722 12786.0 235 2775-33 1627 0.69031 29I I I.OOI 32
721 12809.5 236 2791.60 1636 0.69322 292 11-033 33
720 12833.1 236 2807.96 1645 0.69614 293 11.066 33
719 12856.7 236 2824.41 1655 0.69907 294 I I.O99 33
718 12880.3 236 2840.96 1664 0.70201 295 11.132 33
717 12903.9 237 2857.60 1673 0.70496 297 11.165 33
716 12927.6 237 2874.33 1682 0.70793 298 11.198 337 i 5 I 2 9 5I-3 238 2891.15 1692 0.71091 299 11.231 33
714 12975.1 238 2908.07 1701 0.7139° 301 11.264 337 I3, 12998.9 238 2925.08 I7II 0.71691 302 I 1.297 33
712 13022.7 238 2942.19 X720 0.71993 303 11-330 34
711 I3046.5 239 2959-39 1730 0.72296 3 °4 11.364 34
710 13070.4 239 2976.O9 1740 0.72600 3°5 11.398 34
709 l 3° 94-3 240 2994.09 1749 0.72905 3°7 11.432 33
708 i 3 r l 8 -3 240 3 O I I -58 1759 0.73212 308 11.465 34
707 I3 I4 2-3 240 3029.17 1769 0.73520 3 IQ 11.499 34
706 13166.3 240 3046.86 1780 0.73830 3 1 1 u -533 34705 13190.3 241 3064.66 1789 0.74141 312 11.567 34
704 132 14-4 241 3082.55 1799 0.74453 3 i 3 11.601 35
703 13238.5 242 3 IOO-54 1810 0.74766 3 i 5 11.636 34
702 13262.7 242 3118.64 1820 0.75081 3 l 6 11.670 34
701 13286.9 242 3 i 36-84 1830 o-75397 318 n.704 35
700 I3 3 11-1 242 3 I 55-14 1841 o.7 5 7 i 5 3 1 9 u -739 35

. 24



T A B L E  I .— C o n t in u e d .

V S(v) Diff. A  (v) Diff. / (V) Diff. T {v) Diff.

699 ! 3335-3 243 3 173-55 1851 0.76034 320 11.774 35
698 13359-6 243 3192.06 1861 0-76354 321 1 1.809 35
697 13383-9 244 3210.67 1872 0.76675 3 3 11.844 35
696 13408.3 244 3229.39 1883 0.76998 324 II.879 35
695 ' 3 4 3 2-7 244 3248.22 1893 0.77322 326 II-9 I4 35
694 1345 7-1 245 3267.15 1904 0.77648 327 11.949 35693 13481.6 245 3286.19 1914 o-77975 329 1 1.984 36
692 13506.1 245 3305-33 1925 0.78304 33° I 2.020 35
691 i 353°-6 246 3324-58 J 937 0.78634 332 12-055 36

690 I3555-2 246 3343-95 1947 0.78966 333 I2.O9I 35
689 13579-8 246 3363-42 1958 0.79299 334 12.126 36
688 13604.4 247 3383-0° 1970 0.79633 336 12.162 36

687 13629.1 247 3402.70 1980 0.79969 337 12.198 36
686 •3653-8 248 3422.50 199 2 0.80306 339 12.234 36
685 13678.6 248 3442.42 2003 0.80645 34° 12.270 36

684 I3703-4 248 3462.45 2015 0.80985 342 12.306 36
683 13728.2 249 3482.60 2026 0.81327 343 12.342 37
682 I 3753-I 249 3502.86 2038 0.81670 345 12.379 36

681 13778.0 249 3523-24 2049 0.82015 347 12.415 37
680 13802.9 250 3543-73 2061 0.82362 348 12.452 37
679 13827.9 250 3564-34 2073 0.82710 349 12.489 37
678 13852.9 250 3585-07 2084 0.83059 3 5 i 12.526 37
677 13877.9 2 5 ' 3605.91 20Q7 0.83410 352 12.563 37
676 13903 0 2 5 1 3626.88 2108 0.83762 354 12.600 37675 13928.1 252 3647.96 2 12 1 0.84116 356 12.637 38
674 13953-3 252 3669.17 2133 0.84472 357 12.675 37
6 7 3 1 3 9 7 8 .5 252 3690.5° 2144 0.84829 359 12.712 3 8

672 14003.7 253 3 7 1 1 94 2 1 5 7 0.85188 361 12.75° 37
671 I4O29.O 253 3733 5 i 2 17 0 o-85549 362 12.787 3 s

670 1 4 0 5 4 - 3 253 3755-21 2182 0.85911 3 6 3 12.825 3 8

669 14079.6 2 5 4 3777-03 2 1 9 5 0.86274 3 6 5 12.863 3 8
6 6 8 1 4 1 0 5 - 0 254 3798.98 2207 0.86639 3 6 7 12.901 3 8
667 1 4 1 3 0 - 4 255 ' 3821.05 2 2 1 925 0.87006 3 6 9 12.939 3 8



T A B L E  I.— C o n t in u e d .

V S(v) Diff. A  (v) Diff. • I{v)
!

Diff. | T (v ) Diff.

666 I4IS5-9 255 3843-24 i2233 0-87375 37° 12.977 38
665 14181.4 255 3865.57 2245 0.87745 372 ^ I3-OI5 38
664 14206.9 256 3888.02 2258 0.88117 373 I3-053 39
663 i4232-5 256 3910.60 2271 0.88490 376 13.092 38
662 14258.1 256 3933-31 2285 0.88866 377 13-I30 39
661 14283.7 257 3956.16 2297 0.89243 379 13.169 39
660 i43° 9-4 257 3979-13 2311 0.89622 380 13.208 396.59 I4335-1 258 4002.24 2324 0.90002 382 13-247 39
6S« 14360.9 258 4025.48 2338 0.90384 384 13.286 40657 14386.7 259 4048.86 2351 0.90768 385 13.326 39
656 14412.6 259 4072.37 2364. o-9i i 53 388 I3-365 39655 i4438-5 259 4096.01 2378 0 .9 15 4 1 389 I3-404 40654 14464.4 260 4119.79 2392 0.91930 3 9 i 13-444 40653 14490.4 260 4 I 4 3 -7 I 2406 0.92321 394 I 3-484 40
652 14516.4 260 4167.77 24 19 0.92715 395 13-524 40

6S' 14542.4 261 4191.96 2434 0.93110 396 13-564 40
650 i4S68-5 261 4216.30 2448 0.93506 398 13.604 40
649 14594.6 262 4240.78 2462 0.93904 400 I 3-644 40

648 14620.8 262 4265.40 2476 0.94304 402 13.684 41
647 14647.0 262 4290.16 2491 0.94706 404 I 3.725 41
646 14673.2 263 43 I5-°7 2505 0.95110 406 13.766 40

645 14699.5 264. 4340.12 2520 °-95516 407 13.806 4 i
644 I 472S -9 264 4365-32 2535 0-95923 410 I 3-847 41
643 14752.3 264 4390.67 2549 0.96333 412 13.888 41

642 14778.7 264 4416.16 2565 0.96745 4 i 3 13.929 42
641 14805.1 265 4441.81 2579 0.97158 416 I3-97I 41
640 14831.6 265 4467.60 2595 0-97574 4i 7 14.01 2 41

639 14858.1 266 4493-55 2609 0.97991 419 14-053 42
638 14884.7 266 4519.64 2625 0.98410 42 I 14-095 42637 149H.3 267 4545-89 2641 ! O.9883I 423 14-137 42

636 14938.0 267 4572.30 2656 0.99254 426 14 -179 42635 14964.7 267 4598.86 2671 0.99680 427 I4.22T 42

634 14991.4 268 4625.57 2687 1.00107 429 14.263 42
26



T A B L E  I.— C ontinued.

V 5» Diff.
|

A  (v) Diff. /  (v) Diff. T(v) Diff.

633 15018.2 268 1 4652.44 2703, 1.00536 431 14-305 43
632 I5° 45-° 269 4679.47 2718' 1.00967 434 14.348 42
631 I 5° 7 I -9 269 4706.65 2735 1.01401 436 I4.390 43
630 15098.8 270 4734.OO 2751 1.01837 437 14-433 43
629 i 5 i 25-8 270 4761.51 2767 1.02274 439 14.476 43
628 i s ^ 2-8 270 4789.18 2784 1-02713 442 i 4-5 !9 43
627 15179-8 271 4817.02 2800 I 03155 443 14.562 43
626 15 206.9 271 4845.02 2816 1.03598 446 14.605 43
625 iS 234 .o 272 487 3 .18 2833 1.04044 448 14.648 44
624 15261.2 272 49O I -5 i 2849 1.04492 4 5 i 14.692 43
623 15288.4 273 4930.00 2867 1.04943 452 14-735 44
622 I 5 3 i 5-7 2 73 4958.67 2883 1.05395 455 J4-779 44
621 I5343-° 2 73 4987.50 29OI 1.05850 457 14.823 44
620 i 537o .3 274 S0 ' 6^ 1 2918 1.06307 459 14.867 44
619 15397-7 274 5 0 4 5 .69 2935 1.06766 461 14.911 45
618 15425-1 275 5° 75-°4 2953 1.07227 463 | J 4-956 44
617 1545 2 6 275 5104.57 2970 1.07690 466 15.000 45
616 15480.I 276 5 134-2 7 2988 1.08156 468 i 5 .°4 5 45
615 I5507.7 276 5 i 64-i 5 3006 1.08624 4 7 i 15.090 45
614 15535.3 277 5194.21 3023 1.09095 473 i 5 -I 35 45
613 15563-0 277 5224.44

I
3042 1.09568 475 15.180 45

612 ' 559°-7 277 5254-86 3060 I 10043 477 15-225 45
611 15618.4 278 5285.46 3078 1.1 05 2 0 48c ! 5.27o 46
610 15646.2 278 5 3 i 6 -24 3097 1.1 IOOO 482 45
609 15674.O 1 279 5347-21 3 1 '5 1.11482 484 15361 46
608 15701.9 279 5378.36 3 i 35 1.11966 486 15-407 46
607 I5 7 29.8 280 5409-71 3 i 53 1.12452 489 15-453 46

606 15757-8 280 ' 5 4 4 D24 3 T7 i I.I294I 492 15-499 47
605 I5785 .8 281 5472.95 [3191 1-13433 494 15-546 46
604 15 8 t 3-9 1 281 5504.86 , 3210 1.13927 497 15-592 46

603 ' 15842.0 281 1 5 5 3 6 .96 3230 1.14424 499 15-638 47
602 15870.1 ' 282 1 5569-26 I 3249 

1 56 o i-75 3268
1.14923 502 15-685 47

601 15898.3 283 1-15425 5 °4 15.732 47
27



T A B L E  I.— C o n t in u e d .

V • S » Diff.

1

A  (?) Diff. 7» Diff.

1
T  (v)

600 15526.6 283 5634-43 J 3288 1.15929 506 15-779599 15954-9 283 5667.31 13309 1- I 6435 5 °9 15.8265 98 15983-2 284 5700.40 3 3 29 1.16944 5 ' 2 | I 5-873597 16011.6 285 5733-69 3349 I - I 7456 5 i4 15.921596 16040.1 2 8 ^ 5767.18 3369 I. 17970 5 i 7 15.968595 16068.6 285 | 5800.87 3389 1.18487 5 i 9 16.016

594 16097.1 286 5834-76 3409 1.19006 522 16.064593 16125.7 287 5868.85 3431 1.19528 525 16.1135 92 16154.4 287 59° 3-16 3 4 5 1 1.20053 527 16.161

5 9 i 16183.1 287 5937-67 3472 1.20580 53° 16.209590 16211.8 288 5 9 7 2-39 3493 1.2 1 I IO 533 16.2585 89 16240.6 288 6007.32 3515 1.21643 535 16.307

588 16269.4 289 6042.47 3536 1.22178 538 16.356587 16298.3 289 6077.83 3558 1.22716 5 4 i 16.405
586 16327.2 290 6113.41 3579 1-23257 544 16.454585 16356.2 290 6149.20 3602 O00C4 547 16.504
584 16385.2 291 6185.22 I3624 1.24348 549 16.553583 16414.3 291 6221.46 3646 1.24897 552 16.603

582 16443.4 292 6257.92 3669 1.25449 555 16.653
581 16472.6 292 6294.61 3691 1.26004 558 16.704
580 16501.8 293 6 3 3 i -5 2 3 7 i 4 1.26562 561 i 6.754579 16531.1 293 6368.66 3735 1.27123 564 16.805578 16560.4 294 6406.01 3762 1.27687 566 16.855577 16589.8 2 94 6443-63 3783 1.28253 57° 16.906

576 16619.2 295 6481.46 3806 1.28823 573 16.958575 16648.7 295 6 5 ' 9-5 2 3830 1.29396 575 17.009574 16678.2 296 6557-82 3854 1.2997 I 579 17.060

573 16707.8 296 6596.36 3878 i-3° 55° 581 I 7.1 125 72 16737.4 297 6635.14 39° 2 I-3 I I 3 I 585 17.1645 7 i 16767.1 298 6674.16 3926 1.31716 588 17.216

570 16796.9 298 6713 42 3 9 5 i 1.32304 5 9 i 1 17.268
569 16826.7 299 6 7 5 2-93 3975 1-32895 594 17-320
568 16856.6 299 6792.68 4000 I -33489 597 1 17-373
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Diff.

4747
4 8

47
4 8  

4 8

49
4 8

4 8

49 49 494949
S°49 5° 5°51
5051

505 15 25i515 25 25 2
S25 253 5 2



T A B LE  I.— Continued.

V S{v) DifT. A  (v) Diff. I{v) Diff. 7» Diff.

567 16886.5 299 6832.68 4025 1.34086 600 I 7.425 53
566 16916.4 3°° 6872.93 4050 1.34686 604 17.478 53
565 16946.4 301 6 9 i 3-43 4075 1.35290 607 I 7.5 3 I 53
564 16976.5 301 6954.18 4101 1.35897 610 I 7.584 54
563 17006.6 302 6995.19 4127 1.36507 613 17.638 53
562 17036.8 302 7036.46 4153 1.37120 616 17.691 54
561 17067.0 3 °3 7077.99 4179 1-37736 620 17-745 54
560 17097.3 3 °3 7119.78 4205 1.38356 623 17.799 54559 17127.6 304 7161.83 4232 1.38979 627 I 7.853 . 55558 17158.0 3 °4 7204.15 4258 1.39606 630 17.908 54557 17188.4 3°5 7246.73 4285 1,40246 633 17.962 5555<> 17218.9 3°5 7289.58 4313 1.40869 637 18.017 55555 17249.4 306 7332.7I 4340 i-4 I S°6 640 18.072 55554 17280.0 3°7 7376.11 4367 1.42146 643 18.127 56553 17 3 I O - 7 3°7 7419.78 4396 1.42789 647 18.183 55552 I 7 3 4I .4 308 7463-74 4423 I-43436 651 18.238 565 5 1 17372.2 308 75° 7-97 4451 1.44087 654 18.294 5655° 17403.0 3 °9 7552.48 4480 I-4 4 7 4 I 658 18.350 56549 17433-9 3 °9 7597.28 4508 1-45399 661 18.406 56548 1 T 7464.8 3 IQ 7642.36 4537 1.46060 66 5 18.462 57547 17495-8 310 7687.73 4566 1.46725 669 18.519 57546 I 7526-8 311 7733-39 4595 1-47394 672 18.576 57545 1755 7-9 312 7779-34 4624 1.48066 676 18.633 57544 | 17589-1 3 12 7825.58 4654 1.48742 680 18.690 57543 17620.3 3 i 3 7872.12 4684 1.49422 684 18.747 58542 17651.6 3 i 3 7918.96 4716 1.50106 687 18.805 585 4 i 1 7 6 8 2 . 9 3 i 4 7966.12 4743 i-5°79 3 691 18.863 58540 1 7 7 14 -3 3 i 5 80 13.55 4775 1.51484 695 18.921 58539 17745-8 3 i 5 8061.30 4806 1.52179 699 18.979 59538 17777-3 316 8109.36 4837 1.52878 703 19.038 58537 17808.9 316 8 tS 7.73 4868 i .5 3 5 8 i 706 19.096 59536 17840.5 3 i 7 8206.41 ’ 4 9 0 0 1.54287 711 19.155 60535 17872.2 3 i 7 8255.41 4932 1.54998 7 i 5 19.215 59

29



TA BLE I . — C o n t i n u e d .

V S(v) Diff A'(v) Diff. I(v) Diff. 7» Diff.

534 17903.9 318 83°4-73 4963 1-55713 718 19.274 60533 17935-7 319 8354-36 4996 1-56431 723 19-334 6053 2 17967.6 319 8404.32 5029 i-57'54 727 19-394 6053i 17999-5 320 8454.61 5061 1.57881 731 19-454 6053° 18031.5 320 8505.22 5094 1.58612 735 I9-5I4 60529 18063.5 321 8556.16 5128 1-59347 739 19-574 6l

528 18095.6 322 8607.44 5162 1.60086 744 19-635 6l
527 18127.8 322 8659.06 5195 1.60830 748 19.696 6l
526 18160.0 323 8711.01 5229 1.61578 752 19-757 62

525 18192.3 324 8763.30 5264 1.62330 756 19.819 62
524 18224.7 324 8815.94 5298 1.63086 761 19.881 62
523 18257.1 325 8868.92 5333 1.63847 765 !9-943 62

522 18289.6 325 8922.25 5368 1.64612 769 20.005 62
521- 18322.1 326 8975-93 5404 1.65381 774 20.067 63
520 18354.7 327 9029.97 5439 1-66155 778 20.130 635I9 18387.4 327 9084.36 5475 1.66933 783 20.193 635i8 18420.1 328 9I39-11 55i 2 1.67716 788 20.256 63517 18452.9 328 9I94-23 5548 1.68504 792 20.319 645i 6 18485.7 329 9249.71 5585 1.69296 796 20.383 645i5 18518.6 33° 9305-56 5623 I . 7 O O 9 2 802 20.447 645M 18551.6 33i 9361.79 5660 1.70894 806 20.511 64513 18584.7 331 9418.39 5699 1.7 1700 810 20-575 65
512 18617.8 332 9475-38 57 36 1.72510 816 20.640 65511 18651.0 332 9532.74 5775 1.73326 820 20.705 655i° 18684.2 333 9590.49 5813 1.74146 825 20.770 6.55°9 18717.5 334 9648.62 5853 I-7497I 830 20.835 66
508 18750.9 334 9707.15 5891 1.75801 835 20.901 665°7 18784.3 335 9766.06 5932 1.76636 840 20.967 66
506 18817.8 336 9825.38 597i 1.77476 845 21.033 665°5 18851.4 336 9885.09 6012 1.78321 850 21.099 675°4 18885.0 337 9945.21 6053 1 -79171 855 21.166 675°3 18918.7 338 10005.74 6093 1.80026 860 21.233 67
502 18952-5 338 10066.67 61341 1.80886 865 21.300 67
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T A B L E  I.— C o n t in u e d .

V • S » Diff. A  (v) Diff. I ( v ) Diff. 7» Diff.

501 i 8q86.3 339 10128.01 6177 1.81751 871 21.367 68
50° 19020.2 34° 10189.78 6219 1.82622 876 21-435 68499 i 9° 54.2 34° 10251.9 626 1.83498 881 2 i-S°3 69

498 19088.2 3 4 i 10314-5 631 1-84379 886 21.572 69497 I9I22.3 3 4 i 10377.6 634 1.85265 892 21.641 69
496 i 9 ' 5 6-4 342 IO44I.O 639 1.86157 897 21.710 69

495 igigo.6 343 10504.9 644 1.87054 903 21.779 69494 19224.9 344 10569.3 648 1-87957 908 21.848 7°493 I9259-3 345 10634.1 652 1.88865 913 21.918 7°

492 19293.8 345 10699.3 657 1.89778 919 21.988 7°
491 19328.3 346 10765.0 661 1.90697 925 22.058 7°
490 19362.9 347 10831.1 665 1.91622 93° 22.128 7 i

489 19397.6 347 10897.6 671 I-925 52 936 22.199 7 i
488 19432-3 348 10964.7 675 1.93488 942 22.270 7 i
487 19467.1 349 I 1032.2 679 1.94430 948 22.341 72

486 19502.0 349 I I IOO.I 685 1-95378 954 22.413 72
485 19536.9 3 5 1 11168.6 689 1.96332 960 22.485 72
484 19572.0 3 5 i 11 23 7.5 695 1.97292 966 22.557 73
483 19607.1 3 5 1 11307.0 699 1.98258 972 22.630 73
482 19642.2 353 11376.9 703 1.99230 977 22.703 73
481 i 9677-5 353 11447.2 709 2.00207 983 22.7767 73
480 19712.8 354 11518.1 ' 713 2.01190 99° 22.849 74479 19748.2 354 11589.4 719 2.02180 996 22,923 74478 19783.6 355 1 1661.3 724 2.03176 1003 22,997 74477 19819.1 356 11733-7 729 2.O4179 IOO9 23.071 75
476 19854.7 357 11806.6 734 2.05188 1015 23.146 75475 19890.4 358 1 1880.0 739 2.06203 1022 23.221 75474 19926.2' 358 H 953-9 745 2.07225 1028 23.296 76473 19962.0 359 12028.4 75° 2.08253 i o 35 23,372 76
472 l 999 7-9 360 12103.4 755 2.09288 IO4I 23.448 76
4 7 i 20033.9 361 12178.9 760 2.IO329 1047 23-524 77
470 20070.0 362 12254.9 766 2.11376 1054 23.601 77
469 20106.2 362 12331.5 771
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T A B L E  I.— C o n t in u e d .

V Diff. A  {v) Diff. I ( v ) Diff. T {v ) Diff.

468 20 142 .4 3 63 12408.6 777 2 .13 4 9 1 xc68 23-755 78
467 20] 78.7 363 '1 2 4 8 6 .3 783 2-14559 1076 23-833 78
466 20 215.0 365 12564.6 788 2- t 5 6 35 1082 : 2 3 .9 11 78
465 20251.5 3 65 12643.4 794 2 . 1 6 7 1 7 1089 23.989 79
464 20288.0 3 6 7 12722.8 799 2.178 0 6 IO96 24.068 79
463 20324.7 367 12802.7 805 2.18902 11 0 4 24 .14 7 79
462 20 36 1.4 367 12883.2 8 1 1 2.20006 I  I  I O 24.226 SO

461 2 0 3 9 8 .1 369 12964.3 816 2 . 2 1 1 1 6 I I 17 24.306 80

460 20435.0 3 6 9 1 3° 45-9 822 2.22233 I 124 24.386 80

459 20471.9 37° 1 3 1 2 8 .1 829 2-23357 1 1 3 2 24.466 8145 8 20508.9 3 7 i I 3 2 I I .O 834 2.24489 11 4 0 24-547 81457 20546.0 3 7 i 132 94.4 841 2.25629 1X47 • 24.628 82

45 6 20583.1 373 13378.5 848 2.267 76 1155 24.7 IO 82455 20620.4 373 1 3 4 6 3 3 853 2 .2 79 3 1 1 16 3 24.792 82454 20657.7 374 13548.6 859 2.29094 1 1 7 1 24.874 82

453 2 0 6 9 5 .1 375 I 3634-5 866 2.30265 1 1 7 8 24.956 8345 2 20732.6 376 1 3 7 2 1 . 1 872 2-3x443 I I 8 5 25-039 834 5 1 20770.2 377 13808.3 878 2.32628 1193 25 .122 84

45° 20807.9 377 138 96.1 885 2.33821 3 201 25.206 84449 20845.6 378 13984.6 891 2.35022 I  2 1 0 | 25.290 84

448 20883.4 380 I 4073-7 898 2.36232 12 1 8 25-374 85447 2092 I .4 380 14 16 3 .5 905 2.37450 1226 ' 25.459 85
446 20959.4 3 8° 14254.0 9 1 1 2.38676 1235 25-544 85445 20997.4 382 I 43 4 5 -1 9 1 9 2.399 11 1243 25.629 86

444 2 10 3 5.6 3 8 3 14437-0 9 Z5 2 .4 1 1 5 4 12 5 1 25-7 X5 86443 2 10 7 3 .9 3 83 ! 4 5 29-5 93 2 2.42405 1260 25.801 87
442 2 111  2 .2 3 85 14622.7 939 2.43665 1268 25.888 87

441 2 1 1 5 0 .7 38.5 1 4 7 1 6 .6 946 2-44933 12 7 6 25-975 87
440 2 11 8 9 .2 386 14 8 11 .2 953 2.46209 1285 26.062 88439 2 1 2 2 7 .8 38 7 14906.5 960 2.47494 1294 j 26.150 88

43 8 212 66.5 388 1 5 ° ° 2-5 968 2.48788 1303 I 26.238 89437 21305-3 3 89 x5° 99-3 975 2.300()I 1 3 T 3 1 26.327 89436 21344.2 389 1 5 1 9 6 .8 982 2.5 140 4 1322 1 26 .4 16 89
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T A B L E  I.— C o n t in u e d .

S(v) Diff. A  (v) Diff. I(v) Diff. 7»

435 21383-1 391 I 5 295-° 99° 2.52726 I 3 3 1 26-505434 21422.2 3 9 2 I 5394-° 997 2-54057 ' 34° 26-595433 2 1 4 6 1 .4 3 9 2 J5493-7 1005 2-55397 1349 26.685

4 3 2 21500.6 394 15594-2 10 12 2.56746 1358 26.7764 3 i 2 1540.O 394 ! 56 95-4 I O I 9 2.5 8 10 4 136 7 26.86743° 2 15 7 9 -4 395 15797-3 1027 2-59471 13 7 7 26.959

429 2 16 18 .9 396 1 5D ° ° . ° 1035 2.60848

r-~
00 27 .051

428 21658-5 397 16003.5 1044 2.62235 : 397 2 7-J43
427 21698.2 398 1 6 1 0 7 .9 1052 2.63632 1407 27.236

426 217 38 .0 399 1 6 2 1 3 .1 1060 2.65039 1 4 1 7 27.329

425 2 1 7 7 7 .9 399 1 6 3 1 9 .1 1068 2.66456 1427 27.423
424 2 1 8 1 7 .8 401 1642 5.9 1076 2.67883 >437 27-5 I 74 23 2 18 5 7 .9 402 16533-5 1084 2.69320 1447 2 7 .6 12
422 21898.1 4 °3 16 6 4 1.9 i °9 3 2.70767 1458 27.70 7
42 I 219 38.4 4 °3 1 6 7 5 1 .2 I I O I 2.72225 1467 27.803

420 2 19 78 .7 404 16 8 6 1 .3 1 109 2.73692 147 7 27.899
4 19 22OI9.1 4 °5 169 72.2 1 1 19 2 .7 5 1 6 9 1489 27-995
4 1 8 22059.6 406 170 8 4.1 1 1 2 7 2.76 658 1500 28.092

4 i 7 22 100.2 407 17 1 9 6 .8 1 137 2 .7 8 15 8 i 5 10 28.189
4 16 2214O.9 409 1 7 3 IO -5 114 5 2.79668 1522 28.2874 i 5 2 2 t 8 1.8 409 174 2 5 .0 1155 2 .8 1 19 0 1533 28.385

4 1 4 22222.7 4 10 i 754o -5 11 6 3 2.82723 1544 28.4844 i 3 22264.7 4 1 1 176 5 6.8 1T73 2.84267 1555 28-583
4 12 22304.8 4 '3 17 7 7 4-1 1 1 8 1 2.85822 15 6 6 28.683

4 1 1 22346.1 413 17892.2 I I 9 I 2.87388 1577 28.783
4 10 ^2387.4 4 1 4 1 8 0 1 1 .3 1200 2.88965 1589 28.884
409 22428.8 4 1 6 1 8 1 3 1 . 3 I 2 I I 2-9 °5 5 4 1601 28.985

408 22470.4 4 16 18 252.4 1220 2-9 2 I 55 1 6 1 3 29.087
407 225 12.0 4 1 7 18 374 .4 1230 2.93768 1625 29.18 9
406 2 2 553-7 4 1 9 18 497.4 I 2 4 O 2-95393 i 6 3 7 2 9 . 2 9 2

4°5 22595.6 4 1 9 1 8 6 2 1 .4 1 2 5 0 2.97030 1649 29 -395-
404 22637.5 4 2  I 18746.4 i 2 5 9 2.98679 1662 29-4994° 3' 22679.6 4 2 2 18 872.3 I 2 7 0
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Diff.

90
90
9 191
92
9 2

92
9 3
9 3

9 4
9 4
9 5

9 5
96 
96

96
9 7
9 7

98
98
9 9

9 9
100
100

101
101
102

102
I C 3
103

104 
104 io5



TA B LE  I.— C o n t i n u e d .

V S (v) Diff. A  ( v) Diff. J (v) Diff. T {v) Diff.

402 22721.8 422 18999.3 1280 3.02015 1686 29.708 i°5
401 22764.0 424 191:27.3 1289 3.03701 1698 29.813 106
400 22806.4 424 19256.2 1300 3°5399 1710 29-9J9 106
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TABLE II.
For Spherical Projectiles.

V S {v) Diff. A  (v) Diff. /  ( » ) Diff. T ( v ) Diff.

2000 O 25 0.00 I 0.00000 40 0,000 12
19 90 25 24 0.01 I 00040 40 0.012 13
1980 49 25 0.02 2 00080 4 i 0.025 12

1970 74 25 0.04 4 0.001 2 I 42 0.037 13
i960 99 25 0.08 5 00163 42 0.050 13
195° 124 26 0.13 5 00205 43 C

O
<0O6

13

1940 * 5 ° 25 0.18 7 0.00248 44 0.076 13
1930 i 7S 26 0.25 8 OO292 44 0.089 13
I92O 201 25 0.33 9 00336 45 0.102 14

I9IO 226 26 O.42 I I 0.00381 46 o .n 6 13
I9OO 252 26 o-53 12 OO427 46 0.129 14
1890 278 26 0.65 13 00473 47 0.143 14

1880 3 °4 26 0.78 14 0.00520 48 0.157 14
1870 33° 27 O.92 15 00568 49 0.171 14
i860 3S7 26 1.07 17 00617 49 0.185 14

1850 383 26 1.24 19 0.00666 5° 0.199 *5
1840 409 27 i -43 20 00716 5 1 0.214 14
1830 4 36 27 1.63 21 00767 52 0.228 15

1820 463 27 1.84 23 0.00819 53 0.243 15
1810 490 27 2.07 24 00872 54 0.258 15
1800 517 28 2.31 26 00926 55 0.273 15

1790 545 27 2-57 27 0.00981 55 0.288 16
1780 572 28 2.84 3° 01036 57 0.304 15
1770 600 28 3 -I 4 31 01093 57 0.319 16

1760 628 28 3-45 33 0.01150 59 0.335 16

I 75° 656 28 3-78 35 OI209 59 0.351 16
1740 684 28 4-13 37 01268 6l 0.367 16

1730 712 29 4-5° 39 O.OI329 61 0.383 17
1720 7 4 i 28 4.89 41 01390 63 0.400 16
1710 769 29 5-3° 43 014531 04 0.416 1 1735



TA BLE II.— C o n t i n u e d .

V S{v) Diff. A  (v) Diff; I (v ) Diff. 7 » Diff.

1700 798 29 5-73 45 0-01517 65 °-433 17
1690 827 29 6.18 47 01582 66 0.450 18
1680 8S6 3° 6.65 5° 01648 67 0.468 17
1670 886 29 7-i5 52 0-01715 68 0.485 18
1660 915 3° 7.67 54 01783 7° °-5 °3 18
1650 . 945 3° 8.21 56 oi853 7i 0.521 18

1640 975 3° 8.77 58 O.OI924 72 o-539 !9
1630 1005 3T 9-35 62 01996 74 °-558 18
1620 1036 3° 9-97 64 02070 75 0.576 19
1610 1066 3° 10.61 66 0.02145 77 o-595 19
1600 1096 3i 11.27 69 02222 78 0.614 19
T59° 1127 3i 11.96 72 O23OO 79 0.633 20

1580 1158 3i 12.68 7 6 0.02379 81 0-653 20157° 1189 3i 13-44 78 02460 82 0.673 20
1560 1220 32 14.22 82 02542 84 0.693 20

i55° 1252 32 i5-°4 86 0.02626 86 °-7I3 21
1540 1284 32 I5,9° 88 02712 87 °-734 2 I
iS3° 1316 32 16.78 92 02799 89 0-755 21

1520 1348 32 17.70 95 0.02888 91 0.776 21
1510 1380 33 18.65 98 02979 93 0-797 22
1500 1413 33 1 9 . 6 3 IOO 03072 94 0.819 22

1490 1446 33 20.63 i°5 0.03166 * 96 0.841 22
1480 1479 33 21.68 109 03262 98 0.863 22
1470 1512 34 22.77 1 1 4 03360 IOI 0.885 23

1460 1546 34 23.91 119 0 03461 103 0.908 23
i45° 1580 34 25.10 124 03564 105 0 931 24
1440 1614 34 26.34 128 03669 107 0-955 24

M30 1648 34 27.62 i33 0.03776 109 0.979 24
1420 1682 35 28.95 138 03885 I 12 1.003 25
1410 1717 35 3°-33 M3 03997 114 1.028 25
1400 1752 35 31.76 149 O.O4I I I I l 6 1-053 26
1390 1787 36 33-25 J54 04227 1 1 9 1.079 26
1380 1823 35 34-79 160

36

04346 122 1.105 26



T A B L E  I I . — C o n t i n u e d .

V Diff. A  (v) Diff. 1 {v) Diff. 7 » Diff.

T37° 1858 36 36-39 164 0.04468 124 1.131 27
1360 1894 37 38.03 170 04592 127 1.158 27
! 35° 1 931 36 39-73 175 04719 129 1.185 27
1340 '967 37 41.48 181 0.04848 133 1.2 I 2 27
T33° 2004 37 43-29 185 04981 136 1.239 28
1320 2041 37 45 -14 191 05117 139 1.267 27
1310 2078 38 47-°5 196 0.05256 142 1.294 28
130° 2116 38 4 9-01 203 05398 144 1.322 29
I 290 2^54 38 S ' . ° 4 2 12 05542 148 r-35 • 30
1280 I 2192 39 53-i 6 22 1 0.05690 152 1.381 30
1270 2231 38 55-37 230 05842 ! 56 1.41 I 31
1260 2269 39 57-67 24O 05998 160 1.442 31
1250 2308 40 60.07 249 0.06158 165 J-473 32
1240 2348 40 62.56 258 06323 169 1-505 33
1230 2388 40 65.14 267 06492 174 i -538 33
1220 2428 42 67.81 278 0.06666 180 i-5 7 i 34
I 2 TO 2470 42 70-59 295 06846 .87 1.605 35
1200 2512 22 73-54 ! 56 07033 97 1.640 18

1195 2534 22 75-i° t6o 0.07130 99 1.658 18
II90 2556 22 76.70 162 07229 IOO 1.676 18
1185 2578 22 78.32 165 07329 T02 1.694 18

1180 | 2600 23 79-97 169 0.07431 IO4 I.712 19
1175 * 2623 23 81.66 i 73 °7535 106 i-7 3 1 20
I T70 2646 23 83-39 177 07641 108 i-7 5 1 J 9
1165 2669 23 85.16 182 0.07749 IIO 1.770 20
1160 2692 23 86.98 186 07859 113 1.790 20
1 ‘ 55 2715 24 88.84 I9O O7972 115 1.810 2 I
1150 2739 24 90.74 r 95 0.08087 117 1.831 21
1145 2763 24 92.69 199 08204 120 1.852 21
I T4O 2787 25 94.68 205 08324 122 1-873 22
i i 35 2812 25 96-73 209 0.08446 124 1.895 22
1130 2837 24 98.82 215 08570 127 1 . 9 1 7 23
1125 2861 2S IOO.97 22137 08697 130 1.940 23



TABLE I I . — C o n t i n u e d .

V ■S' (®) Diff. ^ (») Diff. I (v ) Diff. T (v ) Diff.

T 120 2886 26 103.18 226 0.08827 132 1.963 23
m s 2912 26 105.44 233 08959 135 1.986 23
I I TO 2938 26 107.77 2.39 O9O94 138 2.009 24

1105 2964 27 110.16 246 O.O9232 141 2.033 24
I IOO 2991 26 112.62 2 5 1 °9 37 3 J 43 2-057 24i o 95 3017 27 1 15-I 3 259 0951 6 147 2.081 25
1090 3 °4 4 27 117.72 266 0.09663 149 2.106 26
1085 3071 28 120.38 ■275 09812 !5 3 2.132 26
1080 3099 28 123-13 283 09965 156 2.158 26

I 0 75 3 I 2 7 28 125.96 291 O. IOI 2 I !5 9 2.184 26
1070 3 i 55 29 128.87 3 00 10280 163 2.210 27
1065 3 i8 4 29 131.87 308 10443 166 2.237 28

1060 3213 30 134-95 3 i 7 0.10609 170 2.265 28
i°S 5 3243 3° 138.12 326 10-79 I 13 2.293 28
1050 3273 3° 141.38 338 10952 177 2.321 29
i °45 3303 3° 144.76 346 O.III29 181 2-35° 29
IO4O 3333 3 i 148.22 355 U 3 10 185 2-379 3°
i °35 3364 3 1 15 1 - 7 7 364 11495 189 2.409 3 1

1030 3395 32 i 55-4 i 374 0.11684 193 2.440 3 i
1025 3427 32 I5 9-I 5 384 11877 197 2.471 3 1
1020 3459 32 162.99 394 12074 202 2.502 32
1015 3 4 9 1 33 166,93 406 0.12276 206 2-534 32
IOIO 3524 33 170.99 418 12482 2 11 2.566 33
1005 3557 34 175-17 43° 12693 215 2-599 33
1000 3 5 9 i 34 179-47 443 0.12908 220 2.632 33995 3625 35 183.90 456 13128 226 2.665 34
990 3660 35 188.46 470 *3354 2 3 1 2.699 35
985 3695 36 193.16 484 o - ^ s 236 2-734 36
980 3 7 3 1 36 198.00 498 13821 241 2.770 36975 3767 36 202.98 5 r3 14062 246 2.806 37
970 3803 37 208.11 529 0.14308 252 2.843 389 65 3840 37 213.40 546 14560 258 2.881 39
060 3877 38 218.86 563 14818 264 ‘ 2.920 39
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TABLE I I . — C o n t i n u e d .

V S(v) Diff. A  (v) Diff. I{v) Diff. T (v ) Diff.

955 3915 38 224.49 580 0.15082 270 2-959 4095° 3953 39 2 30.2 9 600 15352 276 2.999 41945 3 9 9 2 39 236.29 620 15628 283 3.040 42

940 4031 39 242.49 637 ° - I 5 9 1 1 290

00q 43935 4070 40 248.86 6 57 16201 297 3-125 4393° 4 1 1 0 4 i 255-43 676 16498 3 °4 3 .16 8 449 25 4 1 5 ! 4 i 262 .19 698 0.16802 3 i i 3 .2 12 45
920 4 1 9 2 42 269 .17 720 1 7 1 1 3 319 3-257 469 i 5 4234 43 276.37 743 174 32 327 3-303 47
9 10 4 2 7 7 43 283.80 767 0 -17 7 5 9 335 3-350 479°5 4320 43 291 .47 793 18094 343 3-397 48
900 4363 44 299.40 819 18437 352 3-445 49895 4407 44 3° 7-59 845 0 .18 7 8 9 360 3-494 5°
890 44 5 1 45 3 16 .0 4 873 I 9 I 49 369 3-544 5 1
885 4496 46 324-77 901 1 9 5 1 8 378 3-595 S 2

880 4542 47 333-78 928 0 .19 8 9 6 387 3-647 53875 4589 47 343- ° 6 961 20283 397 3.700 54
870 4636 48 352.67 997 20680 407 3-754 55
865 4684 48 362.64 1032 0 .210 8 7 4 1 8 3.809 56
860 4732 49 372.96 1064 21505 428 3-865 57855 478 1 49 383.60 1099 21933 439 3.922 58
850 4830 5° 394-59 i i 37 0.22372 4 5 i 3.980 59845 4880 5 * 405.96 i i 75 22823 462 4-039 6 l
840 4 9 3 1 52 4 1 7 . 7 1 12 1 6 23285 476 4.10 0 6 l

835 4983 53 429.87 1258 0 .2376 1 487 4 .1 6 1 63
830 5036 53 442.45 1302 24248 498 4.224 64
825 5089 54 455-47 1347 24746 5 u 4.288 66

820 5 M 3 55 468.94 1395 0.25257 526 4-354 67

815 5 1 9 8 55 482.89 1444 25783 54° 4 .421 68
810 5253 56 497-33 1495 26323 553 4.489 7°

805 5309 57 5 12 .2 8 1549 0.26876 568 4-559 7 i
800 5 3 66 58 527-77 1604 27444 587 4.630 72795 5424 59 543-S i 16 6 139 28031 601 4.702 74



T A B L E  II.— C o n t in u e d .

V N(t/) Diff. A  {v) Diff. U v ) Diff. J T (v ) Diff.

79° 5483 59 560.42 1722 0.28632 617 I 4-776 76
785 5542 60 577-64 1784 29249 634 4-852 77
780 5602 61 595-48 1849 29883 650 4.929 7977S 5663 62 613.97 1916 o.3 °53 3 670 5.008 80
770 5725 6 3 6 33 -r3 1988 3 12°3 688 5.088 82
765 5788 64 653.01 2062 31891 707 5- ' 7° 84

760 5852 65 673-63 2138 0.32598 727 5-254 86755 5 9 17 66 695.01 22lS~̂ 33325 748 5-34° 8775° 5983 67 7*7  *9 23 °3 3 4°7 3 77° 5-427 9°

745 6050 68 740.22 2389 0.34843 7 91 5-517 9 i74° 6118 69 764.11 248c 35634 814 5.608 93735 6187 69 788.91 2574 36448 837 5-7° i 96

73° 6256 7 i 814.65 2673 0.37285 861 5-797 977 25 6327 72 841.38 2776 38146 887 5-894 IOO
720 6399 73 869.14 2882 39°3 3 912 5-994 102

7 i 5 6472 74 897.96 2996 0-39945 940 6.096 104
710 6546 75 Q27.Q2 3 H 5 40885 968 6.200 1067°5 6621 77 959-°7 3238 41853 995 6.306 IO9

700 6698 78 9 9 I -45 3366 0.42848 1024 6.415 I I I695 6776 79 1025.2 35° 43872 1054 6.526 ri4
690 685 s 80 1060.2 364 44926 1089 6.640 I l6

685 6935 81 1196.6 378 0.46015 1128 6.756 119
680 7016 . 82 11 34-4 394 47143 1159 6.875 122

675 7098 84 H 73-8 409 48302 1192 6.997 I2 5
670 7182 85 1214-7 427 0.49494 1228 7-122 127
665 7267 87 1257-4 444 50722 1267 7.249 * 3 1
660 7354 88 1301.8 463 5 ' 98 9 1307 7.380 134
655 7442 89 1348.1 482 0.53296 1349 7-5*4 T37
650 7531 91 1396-3 502 54645 1392 7-65* 140
645 7622 92 1446.5 523 56°37 1436 7-79* M3

640 77i4 94 1498.8 546 °-57473 1482 7-934 147
635 7808 95 1553-4 568 58955 1529 8.081 150
630 H 79o3 97 1610.2 ^ 9 2 60484 1579 8.231 *54
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T A B LE  II.— C o n t i n u e d .

V S kU Dill. A  (v ) Diff.

625 8000 98 1669.4 618
620 8098 IOO I 7 3 I-2 644
615 8198 IOI 1795-6 673
610 8299 103 1862.9 702
605 8402 IOS i 933-i 733
600 850 7 107 2006.4 765595 8614 108 2082.9 80059° 8722 III 2162.9 836
585 8833 I I 2 2246.5 872

58° 8945 114 2333-7 9 1 1575 9059 I l6 2424.8 954570 9175 I l8 2520.2 998
565 9293 I 20 2620.0 1043
56° 9413 122 2724.3 IO9I555 9535 124 2833.4 I 142

55° 96 59 126 2947.6 1196545 9785 I29 3067.2 125254° 9 9 14 131 3 ! 9 2-4 1312

535 10045 133 ' 3323-6 1374
■ 53° 10178 135 3461.0 14405 25 10313 138 3605.0 1509

520 10451 I40 3755-9 15825 i 5 10591 143 3 9 I4 -1 16605 i ° 10734 146 4080.1 1743
505 10880 148 4254-4 18295 00 11028 151 4437-3 1920495 11179 153 4629.3 2017

49° 11332 156 4831.0 2118
485 11488 160 5042.8 2226
480 11648 162 5265.4 2340

475 11810 '65 5499-4 2461
470 U 975 168 5745-5 2588
465 12143 172 6004.3 272441

I ( v ) Diff. 7» Diff.

0.62063 1633 8.885 158
63696 1690 8-543 162
65386 1737 8.705 166

0.67123 1799 8.871 170
68922 1859 9.041 174
70781 1923 9-215 179

0.72704 1988 9-394 183
74692 2055 9-577 188
76747 2126 9-765 192

0.78873 2199 10-957 197
81072 2276 10.154 203
83348 2356 io -357 208

0.85704 2 440 10.565 213
88144 2526 10.778 219
90670 2617 10.997 225

0.93287 2711 11.222 231
95998 2810 n -453 237
98808 2913 11.690 243

1.01721 3019 u -933 250
1.04740 3 i 33 12.183 257
1.07873 3 247 12.440 264

I . I I I 20 3366 12.704 271
1.14486 3495 12-975 279
1.17981 3633 13-254 287

1.21614 3779 i 3-5 4 i 295
1-25393 3919 13-836 302
1.29312 4070 14.138 312

1-33382 4232 14-45° 320
1.37614 4399 14.770 330
1.42013 4575 15.100 340
1.46588 4760 i 5-44o 35°
1-51348 4953 15-79° 360
1.56301 5 i 57 16.150 37o



TABLE II.— C o n t i n u e d .

V .s» Diff. A  (w) Diff. I ( v ) Diff. T(v) Diff.

460 I23i5 175 6276.7 2868 1.61458 5368 16.520 382455 12490 178 6563.5 3020 1.66826 5593 16.902 39445° 12668 6863.5 1.72419 17.296
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TABLE III

0 (0) Diff.

I

Tan 8 Diff. 8 W Diff. Tan 0 Diff.

o° oo' 0.00000 582̂ 0.00000 582 l i ° oo' 0.19560 616 0.19438 604
O 20 00582 582 00582 582 I I 20 20176 618 20042 606
o 40 01164 582 01164 582 I I 4° 20794 621 20648 608

I OO 0.01746 582 0.01746 582 12 OO 0.21415 623 0.21256 608
I 20 02328 582 02328 582 12 20 22038 625 21864 6l I
I 40 02910 583 02910 582 12 40 22663 627 22475 612

.2 OO 0-03493 583 0.03492 58,3 !3 OO O.2329O 630 0.23087 613
2 20 04076 583 04075 583 13 20 2392O 633 23700 616
2 40 04659 584 04658 583 13 4° 24553 636 24316 617

3 OO 0.05243 584 0.05241 58.3 l 4 OO 0.25189 638 0.24933 6193 20 05827 585 05824 584 14 20 25827 641 25552 6203 40 06412 586 06408 585 14 40 26468 644 26172 623

4 OO 0.06998 587 0.06993 58.5 15 OO 0.27II2 647 0.26795 6244 20 07585 587 07578 58.5 i 5 20 27759 650 27419 6274 40 08172 588 08163 586 i 5 40 28409 654 28046 629

5 OO 0.08760 589 0.08749 586 16 OO 0.29063 657 0.28675 6305 20 09349 590 09335 587 l6 20 2972O 660 29305 6335 40 09939 591 09922 588 l6 4° 30380 663 29938 635
6 OO 0.10530 5 9 2 0.10510 589 !7 OO 0.31043 667 0.30573 637
6 20 IT 122 593 1 1099 589 17 20 3 *7 IO 671 3I2IO 640
6 40 11715 594 11688 59° 17 4° 32381 674 31850 642

7 OO 0.I230Q 596 0.12278 591 18 OO 0.33055 678 0.32492 6447 20 12905 597 12869 592 18 20 33733 682 3 3 ^ 6 6477 4P 13502 59s 13461 593 18 40 34415 686 33783 650

8 OO O.I4IOO 600 0.14054 594 I 9 OO 0*35 !°I 690 0-34433 652
8 20 14700 601 14648 595 T9 20 3 5 7 9* 695 35085 655
8 40 15301 603 I5 243 595 l 9 4° 36486 699 35740 6579 00 0.15904 605 0.15838 597 20 OO 0.37185 7 °3 o.3 6397 6609 20 16509 607 i 6 435 598 20 20 37888 708 37057 6639 40 17116 608 17033 600 20 4° 38596 7 i 3 37720 666

IO OO 0.17724 610 0.17633 600 21 OO 0-39309 1 717
0.38386 669

IO 20 18334 612 18233 602 21 20 400261 722 39°55 672
IO 40 18946 614 18835 6034 213 4°

COr-.O'nf 728 39727 676



TABLE III.— C o n t i n u e d .

0 m Diff. Tan 6 Diff. 0 <P) Diff. Tan 6 Diff.

22 3 oo' 0.41476 732 0.40403 678 33 5 oo' 0.69253 992 0.64941 830
22 20 42208 738 41081 682 33 20 70245 1003 65771 8.37
22 40 42946 744 41763 684 33 40 71248 1015 66608 843
23 OO 0.4369° 749 0.42447 689 34 OO 0.72263 1027 0.67451 85023 20 44439 754 4 3 ' 36 692 34 20 7329° 1040 68301 856
23 40 45 >93 760 43828 695 34 40 7433° 1052 69157 864

24 OO °-45953 766 0.44523 699 35 OO 0.75382 1065 0.7002 I 870
24 20 46719 772 45222 702 35 20 76447 1078 70891 878
24 40 4 7 4 9 1 778 4 5 9 24 7°7 35 4° 77525 1092 7 ' 769 885

25 OO 0.48269 785 0.46631 710 36 OO 0.78617 1106 0.72654 893
25 20 4 9 °5 4 791 47341 7 i 4 36 20 79723 1120 73547 900
25 40 49845 798 48055 718 36 40 80843 " 3 4 74447 908

26 OO 0.50643 805 0.48773 722 37 OO 0.81977 " 4 9 0-75355 9 '7
26 20 5 j 448 812 49495 727 37 20 83126 " 6 5 76272 924
26 40 52260 818 50222 7 3 1 37 4° 84291 1x82 77196 933
27 OO o-530 78 826 0.50 953 735 38 OO 0-85473 " 9 7 0.78129 9 4 '
27 20 53904 834 51688 739 38 20 86670 1213 79070 950
27 40 54738 842 52427 744 38 40 87883 1231 80020 958
28 OO o.5558o 849 °.5 3 ' 7 ' 749 39 OO 0.89114 1249 0.80978 968
28 20 56429 857 53920 753 39 20 90363 1266 81946 977
28 40 57286 865 54673 758 39 40 91629 1285 82923 ‘ 987

29 OO 0.58151 874 0-5 5 4 3 1 763 40 OO O.92914 1303 0.83910 996
29 20 59025 882 56194 768 4° 20 94217 ' 3 24 84906 1006
29 40 59907 892 56962 773 40 40 9 5 5 4 ' '34 3 85912 1017

30 OO 0.60799 900 0-57735 778 4 i OO 0.96884 >363 0.86929 10263° 20 61699 909 58513 784 4 i 20 98247 1385 87955 10373° 40 62608 919 59297 789 4 i 40 99632 1407 88992 1048

3 i OO 0.63527 928 0.60086 795 42 OO 1.01039 1429 O.9OO4O '° 5 93 i 20 64455 939 60881 800 42 20 02468 1452 9x099 107 l3 1 40 65394 949 61681 806 42 4° O392O 1475 92170 1082

32 OO 0.66343 959 0.62487 812 43 OO '■05395 '4 9 9 0.93252 1093
32 20 67302 97o 63299 818 43 20 06894 1524 94345 1106
32 40 68272 98l 64117 824 43 40 08418 155°' 9 5 4 5 ' 1118
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T A B L E  III.— C o n t in u e d .

0 m Diff. Tan 0
1

Diff. e (0) Diff. Tan 6 Diff.

4 4° O O ' 1.09968 1576 0.96569 1131 52 00' 1-57257 2522 1.27994 154744 20 1-11544 1604 97700 1143 5 2 20 1-59779 2578 1.29541 156944 40 1-1314* 1631 98843 1157 5 2 40 1.62357 2638 I.31110 159445 OO 1.14779 1660 I.OOOOO 1170 53 O O 1.64995 2701 1.32704 161945 20 1.16439 1690 1.01170 1185 53 20 1.67696 2764 1-34323 164545 40 1.18129 1720 1-02355 1198 53 40 1.70460 2831 1-35968 1670

46 00 1.19849 i 7 5 i! ^ s s s 1213 54 O O 1.73291 29OO 1.37638 i6g8
46 20 1.21600 1784 1.04766 1228 54 20 1.76191 2971 !-39336 1725
46 40 1.23384 1817 1.05994 1243 54 40 1.79162 3°45 1.41061 175447 O O 1.25201 1852 1.07237 1259 155 OO 1.82207 3122 1.42815 178347 20 1.27053 1887 1.08496 1274 55 20 1-85329 3201 1.44598 181347 40 1.28940 1923 1.09770 1291 55 40 1.88530 3285 1.46411 1845

48 00 1.30863 i960 1.11061 1308 56 OO 1.9x81 s 3 3 7 i 1.48256 1877
48 20 1.32823 2000 1.12369 1325 56 20 1.95186 3460 1910
48 40 1-34823 2040 1.13694 1343 56 40 1.98646 3553 i-5 2°4 3 194349 OO 1.36863 2081 1-15037 1361 57 00 2.02199 365° 1.53986 •o 00 049 20 1.38944 2124 1.16398 1379 57 20 2.05849 3 7 5 i I -55966 201549 40 1.41068 2168 1.17777 1398 57 4° 2.09600 3856 1.57981 205250 OO 1.43236 2214 1 •19 175 1418 58 OO 2.J3456 3965 1.60033 20925° 20 1-4545° 2260 1.20593 1438 58 20 2.I742I 4079 1.62125 21315° 40 I . 47710 2309 I.22031 1459 58 40 2.21500 4197 1.64256 2172

5 1 OO 1.50019 2360 1.23490 1479 59 OO 2.25697 4 3 2 1 1.66428 22155 1 20 i -5 2379 2412 1.24969 1502 59 20 2.30018 445° 1.68643 2258
5 1 40 I-5 4 7 9 1 2466 1.26471 1 5 2 3 59 40 2.34468 4585 I.70901 2304

6̂0
1

00 2-3 9°5 3 4726 1-73205 2351
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